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Let f be a bounded function on a closed interval [a, b].

Definition 1. A partition of [a, b] is a set P = {t0, t1, . . . , tn} such that

a = t0 < t1 < · · · < tn = b.

Definition 2. Let P = {t0, t1, . . . , tn} be a partition of [a, b]. For each i =
1, 2, . . . , n let

mi = inf f([ti−1, ti]),

Mi = sup f([ti−1, ti]).

Then the lower sum of f relative to P is

L(f,P) =
n∑

i=1

mi(ti − ti−1)

and the upper sum of f relative to P is

U(f,P) =
n∑

i=1

Mi(ti − ti−1).

Definition 3. Define the numbers

Lb
a(f) = sup{L(f,P) | P a partition of [a, b]},

U b
a(f) = inf{U(f,P) | P a partition of [a, b]}.

We say that f is integrable if Lb
a(f) = U b

a(f), in which case this common
value is called the integral of f from a to b; it is denoted∫ b

a
f.

We can now build up a body of propositions, lemmas, and theorems
surrounding the notions of integrability and integrals.

Proposition 4. For any partition P = {t0, . . . , tn} of [a, b],

L(f,P) ≤ U(f,P).

Proof. Since mi ≤Mi for all i, we have that mi(ti − ti−1) ≤Mi(ti − ti−1) for
all i. Thus

L(f,P) =
∑

mi(ti − ti−1) ≤
∑

Mi(ti − ti−1) = U(f,P).
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We now aim to compare lower and upper sums for different partitions.
In order to make these comparisons, we will need the notion of a refinement
of a partition.

Definition 5. Let P and P ′ be partitions of [a, b]. If P ⊆ P ′, then we call P ′
a refinement of P .

Proposition 6. Let P , P ′ be partitions of [a, b]. If P ′ refines P , then

L(f,P) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,P).

Proof. Manifest if you draw a picture. �

Proposition 7. If P and Q are any two partitions, then

L(f,P) ≤ U(f,Q).

Proof. Let P ′ = P ∪ Q = {t | t ∈ P or t ∈ Q}. Then P ′ refines P and Q.
Thus (using both Proposition 6 and Proposition 4)

L(f,P) ≤ L(f,P ′) ≤ U(f,P ′) ≤ U(f,Q).
�

Corollary 8. We always have Lb
a(f) ≤ U b

a(f).

Proof. LetQ be a partition of [a, b]. If P is any other partition, Proposition 7
tells us that L(f,P) ≤ U(f,Q). Thus U(f,Q) is an upper bound for the set
of all lower sums. It follows that

Lb
a(f) = sup{L(f,P) | P a partition of [a, b]} ≤ U(f,Q).

In turn, since Q was arbitrary, this inequality says that Lb
a(f) is a lower

bound for the set of all upper sums. Hence

Lb
a(f) ≤ inf{U(f,P) | P a partition of [a, b]} = U b

a(f),

as desired. �

Having built up some useful ways for comparing lower and upper sums,
we now turn to the task of proving that all continuous functions are inte-
grable. We will need a lemma and a proposition to get the ball rolling.

Lemma 9. Let X ⊆ R.
(1) If supX exists, then for any ε > 0, there exists x ∈ X such that

0 ≤ supX − x < ε.

(2) If infX exists, then for any ε > 0, there exists x ∈ X such that

0 ≤ x− infX < ε.

Proof. Given ε > 0, observe that supX − ε is not an upper bound for X .
(Otherwise, supX would not be the least upper bound of X .) Thus there
exists x ∈ X such that supX − ε < x, whence supX − x < ε. We also have
0 ≤ supX − x since x ∈ X and supX is an upper bound for X .

The proof for part (2) is similar. �
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Recall that throughout this note, f is a bounded function on [a, b].

Proposition 10. The function f is integrable if and only if for all ε > 0, there
exists a partition P of [a, b] such that

0 ≤ U(f,P)− L(f,P) < ε.

Proof. First assume that f is integrable. For any partition P , the inequality
0 ≤ U(f,P)−L(f,P) is guaranteed by Proposition 4. Given ε > 0, Lemma
9 implies that there is an element of {L(f,P) | P a partition of [a, b]}within
ε of Lb

a(f) = sup{L(f,P) | P a partition of [a, b]}. In particular, there is a
partition P1 such that

Lb
a(f)− L(f,P1) < ε/2.

Similarly, there is a partition P2 such that

U(f,P2)− U b
a(f) < ε/2.

It follows that
U(f,P2)− L(f,P1) < ε.

Let P = P1 ∪P2. Since P refines both P1 and P2, Proposition 7 implies that

L(f,P1) ≤ L(f,P) ≤ U(f,P) ≤ U(f,P2).

Thus we also have
U(f,P)− L(f,P) < ε,

as desired.
We now suppose that for any ε > 0 there exists a partition P such that

U(f,P)−L(f,P) < ε. In order to prove that f is integrable, we must show
that Lb

a(f) = U b
a(f). Given ε > 0, choose P such that U(f,P)−L(f,P) < ε.

Then
L(f,P) ≤ Lb

a(f) ≤ U b
a(f) ≤ U(f,P),

so
0 ≤ U b

a(f)− Lb
a(f) < ε

for all ε > 0. This is only possible ifLb
a(f) = U b

a(f), i.e., if f is integrable. �

We are just about ready to prove our first major theorem on integrability,
namely that all continuous functions on a closed interval are integrable, but
we will need the following definition and theorem in order to continue. For
the time being, we drop the assumption that f is bounded on [a, b].

Definition 11. A function f defined on a closed interval [a, b] is uniformly
continuous on [a, b] if for every ε > 0 there exists δ > 0 such that if x, y ∈
[a, b] and |x− y| < δ, then

|f(x)− f(y)| < ε.

Theorem 12. A function f is continuous on [a, b] if and only if it is uniformly
continuous on [a, b].
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It is obvious from the definitions that uniform continuity implies conti-
nuity. We will not undertake a proof of the opposite implication here, but
— briefly engaging in a small amount of cheating — we will freely use
it. The reader is encouraged to think about why such a result should be
expected, and she is referred to Math 112 if she would like to see a proof.

Theorem 13. If f is continuous on [a, b], then f is integrable on [a, b].

Proof. First note that the extreme value theorem implies that f is bounded,
so we are free to invoke all of the results proved above.

Given ε > 0, Theorem 12 implies that there exists δ > 0 such that if x, y ∈
[a, b] and |x − y| < δ, then |f(x) − f(y)| < ε

2(b−a) . Now pick any partition
P = {t0, . . . , tn} such that each subinterval of P has length less than δ. It
follows that whenever x, y ∈ [ti−1, ti], then |x − y| < δ, so |f(x) − f(y)| <

ε
2(b−a) . Thus Mi −mi ≤ ε

2(b−a) , and the following chain of (in)equalities is
valid:

U(f,P)− L(f,P) =
∑

Mi(ti − ti−1)−
∑

mi(ti − ti−1)

=
∑

(Mi(ti − ti−1)−mi(ti − ti−1))

=
∑

(Mi −mi)(ti − ti−1)

≤
∑ ε

2(b− a)
(ti − ti−1)

=
ε

2(b− a)
∑

(ti − ti−1)

=
ε

2(b− a)
(tn − t0)

=
ε

2
< ε.

By Proposition 10, we may conclude that f is integrable on [a, b]. �

Theorem 14 (Fundamental Theorem of Calculus). Suppose f is integrable on
[a, b] and there exists g such that f = g′. Then∫ b

a
f = g(b)− g(a).

Proof. Let P = {t0, . . . , tn} be any partition of [a, b]. Applying the mean
value theorem to g over the subinterval [ti−1, ti], we see that there exists
ci ∈ (ti−1, ti) such that

g′(ci) =
g(ti)− g(ti−1)
ti − ti−1

.

Since g′ = f , we may rewrite this as

f(ci)(ti − ti−1) = g(ti)− g(ti−1).
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Since mi ≤ f(ci) ≤Mi, we have that

L(f,P) =
∑

mi(ti−ti−1) ≤
∑

f(ci)(ti−ti−1) ≤
∑

Mi(ti−ti−1) = U(f,P).

We have just seen that the middle sum can be rewritten as∑
(g(ti)− g(ti−1))

which telescopes to give g(b) − g(a). Thus for any partition P of [a, b] we
have

(1) L(f,P) ≤ g(b)− g(a) ≤ U(f,P).
Since f is integrable, Proposition 10 implies that for all ε > 0 there exists

a partition P such that

L(f,P) ≤
∫ b

a
f ≤ U(f,P) and U(f,P)− L(f,P) < ε.

Combining this with (1), we see that for all ε > 0,∣∣∣∣∫ b

a
f − (g(b)− g(a))

∣∣∣∣ < ε.

This is only possible if ∫ b

a
f = g(b)− g(a),

as desired.
�


