MATH 111: INTEGRALS

Let f be a bounded function on a closed interval [a, b].
Definition 1. A partition of [a,b] is a set P = {to,11,...,t,} such that
a=tyg <ty <---<ty,=Dh.

Definition 2. Let P = {to,t1,...,t,} be a partition of [a,b]. For each i =
1,2,...,nlet

m; = inf f([ti—1,t))

M; = sup f([ti-1,t:])-

Then the lower sum of f relative to P is
L(f,P) = imz(tl —ti-1)
i=1
and the upper sum of f relative to P is
U(f,P)= Zn:Mi(ti —ti-1).
i=1

Definition 3. Define the numbers
LA(f) = sup{L(f,P) | P a partition of [a,b]},
Ub(f) = inf{U(f,P) | P a partition of [a, b]}.

We say that f is integrable if L2(f) = U2(f), in which case this common
value is called the integral of f from a to b; it is denoted

[+

We can now build up a body of propositions, lemmas, and theorems
surrounding the notions of integrability and integrals.

Proposition 4. For any partition P = {to,...,t,} of [a,]],
L(f,P) <U(f,P).

Proof. Since m; < M, for all i, we have that m;(t; — t;—1) < M;(t; —t;—1) for
all 7. Thus

L(f,P) = mi(ti—ti1) <Y Mi(ti —ti1) = U(f,P).
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We now aim to compare lower and upper sums for different partitions.
In order to make these comparisons, we will need the notion of a refinement
of a partition.

Definition 5. Let P and P’ be partitions of [a, b]. If P C P’, then we call P’
a refinement of P.

Proposition 6. Let P, P’ be partitions of [a,b]. If P’ refines P, then
L(f,P) < L(f,P") U(f,P") S U(f,P).
Proof. Manifest if you draw a picture. O

Proposition 7. If P and Q are any two partitions, then
L(f,P) <U(f, Q).

Proof. Let P = PUQ = {t |t € Port € Q}. Then P’ refines P and Q.
Thus (using both Proposition|6|and Proposition [4)

L(f,P) < L(f.P") U(f,P") < U(£. Q).
U
Corollary 8. We always have L%(f) < UL(f).

Proof. Let Q be a partition of [a, b]. If P is any other partition, Proposition|/]
tells us that L(f,P) < U(f, Q). Thus U(f, Q) is an upper bound for the set
of all lower sums. It follows that

LY(f) = sup{L(f, P) | P a partition of [a,b]} < U(f, Q).

In turn, since Q was arbitrary, this inequality says that L(f) is a lower
bound for the set of all upper sums. Hence

Lo (f) < inf{U(f,P) | P a partition of [a,b]} = UL(f),
as desired. 0

Having built up some useful ways for comparing lower and upper sums,
we now turn to the task of proving that all continuous functions are inte-
grable. We will need a lemma and a proposition to get the ball rolling.
Lemma?9. Let X C R.

(1) If sup X exists, then for any € > 0, there exists x € X such that
0<supX —z <e.
(2) Ifinf X exists, then for any € > 0, there exists x € X such that
0<z-—infX <e.
Proof. Given € > 0, observe that sup X — ¢ is not an upper bound for X.
(Otherwise, sup X would not be the least upper bound of X.) Thus there
exists x € X such that sup X — ¢ < x, whence sup X — z < £. We also have

0 <sup X — z since x € X and sup X is an upper bound for X.
The proof for part (2) is similar. O
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Recall that throughout this note, f is a bounded function on [a, b].

Proposition 10. The function f is integrable if and only if for all ¢ > 0, there
exists a partition P of [a, b] such that

0 < U(f,P)—L(f,P) <e.

Proof. First assume that f is integrable. For any partition P, the inequality
0 < U(f,P)— L(f,P) is guaranteed by Proposition[d] Given e > 0, Lemma
9]implies that there is an element of {L(f, P) | P a partition of [a, b]} within
e of L2(f) = sup{L(f,P) | P apartition of [a,b]}. In particular, there is a
partition P; such that

Ly(f) = L(f,P1) < &/2.

Similarly, there is a partition P, such that

U(f,P2) = Ua(f) <e/2
It follows that
U(f,P2) = L(f,P1) <e.
Let P = Py U Psy. Since P refines both P; and Ps, Propositionﬁ]implies that

Thus we also have
U(f,P) - L(fﬁfp) <eg,
as desired.

We now suppose that for any € > 0 there exists a partition P such that
U(f,P)—L(f,P) < e. In order to prove that f is integrable, we must show
that L2(f) = U(f). Given € > 0, choose P such that U(f, P) — L(f,P) < e.
Then

L(f,P) < Le(f) < Ua(f) <U(f,P),
SO
0 < UL(f) = La(f) < e
foralle > 0. Thisis only possible if L%(f) = U(f), i.e., if f isintegrable. [

We are just about ready to prove our first major theorem on integrability,
namely that all continuous functions on a closed interval are integrable, but
we will need the following definition and theorem in order to continue. For
the time being, we drop the assumption that f is bounded on [a, b].

Definition 11. A function f defined on a closed interval [a, b] is uniformly
continuous on [a, b] if for every ¢ > 0 there exists § > 0 such that if z,y €
[a,b] and |z — y| < §, then

[f(z) = fly)| <e.

Theorem 12. A function f is continuous on [a, b] if and only if it is uniformly
continuous on [a, b|.
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It is obvious from the definitions that uniform continuity implies conti-
nuity. We will not undertake a proof of the opposite implication here, but
— briefly engaging in a small amount of cheating — we will freely use
it. The reader is encouraged to think about why such a result should be
expected, and she is referred to Math 112 if she would like to see a proof.

Theorem 13. If f is continuous on [a,b], then f is integrable on |a, b].

Proof. First note that the extreme value theorem implies that f is bounded,
so we are free to invoke all of the results proved above.

Givene > 0, Theoremimplies that there exists 0 > Osuch thatif x,y €
[a,b] and |z — y| < §, then |f(z) — f(y)| < ( oy Now pick any partition
P = {to,...,tn} such that each subinterval of P has length less than ¢. It
follows that whenever =,y € [t;—1,t], then |z — y| < §,s0 |f(z) — f(y)| <
3=y Thus M; —m; < 55, and the following chain of (in)equalities is

valid:
(fa Z M Z m'L i — li— 1
= Z —ti—1) —mi(t; —ti—1))
= Z M; — mz ti —ti— 1)
> Z i z 1)
B 2(b —a) Z(t ti-1)
£

.
2
<e.

By Proposition[10} we may conclude that f is integrable on [a, b]. O

Theorem 14 (Fundamental Theorem of Calculus). Suppose f is integrable on
[a, b] and there exists g such that f = ¢'. Then

b
/ f =) - gla).

Proof. Let P = {to,...,t,} be any partition of [a,b]. Applying the mean
value theorem to g over the subinterval [¢;_1,t;], we see that there exists
¢i € (ti—1,t;) such that

Since ¢’ = f, we may rewrite this as

flei)(ti —tio1) = g(ti) — g(ti—1)-
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Since m; < f(¢;) < M;, we have that
L(f,P) = Zmi(ti_ti—l) < Zf(ci)(ti_ti—l) < ZMi(ti_ti—l) =U([,P).
We have just seen that the middle sum can be rewritten as

Z(g(ti) —g(ti-1))

which telescopes to give g(b) — g(a). Thus for any partition P of [a, b] we
have

M) L(f,P) < g(b) = g(a) < U(f,P).
Since f is integrable, Proposition [I0|implies that for all ¢ > 0 there exists
a partition P such that

p < | "f<UGLP) and U(LP)—LUP) <e.

Combining this with (I), we see that for all & > 0,

[ -0 gl <=

This is only possible if
b
| =4 gta)

as desired.



