Complex Quadratic Polynomials

Definitions (Map(S):, f("!) Let S be a set. We will denote the set of all functions f such
that domain(f) = codomain(f) = S by Map(S). We define a function 1g in Map(S) by

15(x) =z for all x € S.

If f and g are in Map(S), then the composition fog is in Map(S), so o is a binary operation
on Map(S). You can easily check that

fols=f=1go0 f forall f € Map(S),

so 1g is an identity element for o. We will call 1g the identity function, or identity map for

S.
Let f, g, and h be elements of Map(S). Then for all z € S, we have

((fog)oh)(z) = (fog)(h(x)) = f(9(h(z))) = f((9 0 h)(x)) = (f o (g0 h))(z).

It follows that f o (goh)) = (f o g) o h, i.e. composition is an associative operation on
Map(S).
If f € Map(S) and n € N, we define f["l € Map(S) by

/O = 1.
= fo flPlforallne N.

Thus

You can show by induction that
flnlo flml — fFml for all m,n € N.
Definition (orbit): Let S be a set, let f € Map(S), and let a € S. The orbit of a under f,

is the sequence
O(f,a) = {f"(a)} = {a, f(a), f(f(a)), F(f(f(a)),--}.
We say that the orbit of a under f is bounded, if O(f,a) is a bounded sequence.
Examples: Let ¢ € C. Define functions t., ., m., and s in Map(C) by
te(z) = c+zforall z€ C.
= c—zforall z € C.

(2)
me(z) = czforall z € C.
(2) 2? for all z € C.



Then

) = {a,c+a,2c+a,3c+a,---} ={nc+a}.
) = {a,c—a,a,c—a,a,c—a,---}.
O(me,a) = {a,ca,c’a,ca,---} ={c"al.
) = {a,a%a*,db, -} = {a®V}.
Thus
(O(te,a) is bounded) <= (¢ =0).
O(r,,a) is bounded for all @ € C and all ¢ € C.
(O(me,a) is bounded) <= (a=0or |c| <1).
(O(s,a) is bounded) <<= (|a| <1).

Definition (fixed point): Let S be a set, let f € Map(S), and let a € S. We say that a
is a fized point for f if f(a) = a. The set of all fixed points for f is denoted by Fix(f).

Examples: For the functions defined in (1) - (4) we have

. C ife=0
Fix(te) = {(z) if e 0.

Fix(r,) = {g}.

: _ J{0} ifc#1
Fix(me) = { C ife=1
Fix(s) = {0,1}.

Note that a is a fixed point for f if and only if the orbit for @ under f is the constant sequence
a=1{a,a,a, -}

Example Let A € Map(R) be defined by
Mz) =2? —1 for all z € R.

Then
OMV?2) ={v2,1,0,-1,0,—1,---}.

O\ 3) = {2,8,2 175, )

) 2747167 256

From this we see that O(),v/2) is bounded, but it is not clear whether or not O(X,2) is
bounded.

The following procedure allows you to get an idea of what the orbits of f look like when
f € Map(R). (In the figure, I've taken f = A, and a = 3.)

Recursive procedure for finding orbits for real functions: Let f € Map(R), and let
a € R. Forn € N let

Prn = (f[n](a)’
a = (fM(a),



a) Plot the graphs of f and of 1g on the same set of axes. The points where the graphs
intersect will satisfy (z, f(z)) = (x,x), i.e. x will be a fixed point for f. Such z are
points whose orbits are constant sequences.

b) Mark the point py = (@, a) on graph(1g).
¢) For each n € N do the following:

— Draw a vertical line through p, = (f["(a), f"(a)) which will intersect graph(f)
at (f"(a), f™*1(a)) = gy

— Draw a horizontal line through q, = (f"(a), f**(a)), which will intersect
graph(1r) at (f"*(a), f**(a)) = Pat1-
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Representation of O(, %)

If we identify the point (¢,t) € graph(1g) with the real number ¢, we get a pretty good
idea of what the orbit O(f, a) looks like. From the picture we see that O(), 3) is bounded,
and that for large n the terms )\["](g) are alternately very close to —1 and very close to 0.

From the figure it is clear that A has two fixed points, one of which is between —1 and
0 (call this fixed point 8) and the other is a little bigger than 2 (call the larger fixed point
«). You can find the exact values of « and 8 by solving the quadratic equation A(z) = z.

By applying the procedure just described, convince yourself of the following facts.
i If a € [~1,0], then A"(a) € [—1,0] for all n € N.

ii If @ € [0, 1], then A(a) € [-1,0], so by (i) O(A, a) is bounded.



iii If @ > «, then O(\, a) is an unbounded increasing sequence.

iv If a < —a, then A(a) > «, so by (iii) O(},a) is unbounded. (To see this it may be
useful to mark the points (—a, &) and (—a, —«) on the figure above.

v If a € (1, ), then O(\, a) decreases until some term is in [0, —1], so by (i), O(A,a) is
bounded.

vi If a € (—a, —1), then A(a) € (0,«), so by (ii) and (v), O(A, a) is bounded.

In summary, O(\, a) is bounded if and only if a € [—a, a].
Definition (J(f), A.): Let f € Map(C). We define the set J(f) by

J(f) ={a € C:0(f, a) is a bounded sequence}.
For each ¢ € C define A\, € Map(C) by
Ae(2) = 2% 4+ cfor all z € C. (5)

We will be investigating the sets J(\.). The discussion above shows that the real numbers
in J(A_y) form the interval [—a, o, where « is the larger fixed point of A_;. The complete
set J(A_1)a is shown below.

The circle around this figure is the circle or radius 2 with center at the origin. It is not
part of J(A_;), and is included just to indicate the scale. Note that the intersection of the
figure with the real axis appears to be a line segment centered at the origin, whose half-
length appears to be approximately equal to the value of the fixed point a discussed above.
Identify where —1 and 8 and 0 occur in the figure.

We will now discuss how the above figure was obtained.

Lemma: Let ¢ € C. Then for all z € C,

2> (1+yle) = @) > (121 +/]el). (6)



Proof: We have
Ae(@)| = |22 + ¢l = [2f? = Je| = (I2] = y/lel) (I2] + /Ie]).
If 2| > 1+ \/H, then (|z| - \/H) > 1, and hence
A=) = |2l + /lel- |
You can now easily show by induction, that for all ¢,z € C, and all n € N,

2> (A+le) = @) > L2l + e,

Corollary: Let ¢ € C. ThenJ()\,) is contained in the disk D(O, 1+ \/H)
Proof: For all z € C,

2¢D(0,1+/ld) = ld>1+ld = P> [+ 0yl

Hence if ¢ # 0, then

z ¢ D(O, 1+ \/H) —  {\"(2)} is unbounded = =z ¢ J()\.),0
and hence

z€J(\) = {An]}isbounded = ze D(0,1+/|c]).

Thus the corollary follows when ¢ # 0. If ¢ = 0, then

J(Ao) ={z: {)\E"](z)} is bounded} = {z: {z*"} is bounded} = D(0, 1),
so the corollary also holds when ¢ = 0. ||

To simplify notation and computer programs, we will

ASSUME FOR THE REST OF THIS NOTE THAT |c| < 1.

Then it follows from our corollary that
J(Ae) € D(0,2)
Notation (J™(\.), I"()\.)): For all n € N and all ¢ € C with |¢| < 1, we define

J'(Ae) = {z€C:

I"(A\.) = {z€C:

In particular -
J'(\) ={z€C:|z] <2} =D(0,2),

and
I’(\,) ={z€C:|z|] =2} =C(0,2),

(9)

(10)



so I°()\.) is the boundary of J°()\.). In general, you should think of I"().) as being the
boundary of J"(\.). I will often use the curve I"().) as a representation of the filled-in
figure J™(\.).

Claim: If |¢| < 1, then

JrH(,) € JM(),) for all n € N,

i.e. the sets J,(A.) form a nested family of sets.

Proof: By (7),

2N = () >2> 144/l
= AR = AAP()] > [(A(Z)] + e > [(AP(z)] > 2
= 2z ¢ J”“()\c),

SO

ze JrH(),) = zeJV()\).

Here are some examples of sets I"(\.) (or J"(\.)) for 0 < n < 8 and various values of c.
In each case I°()\.) is the circle with center 0, and radius equal to 2, and J°().) is the closed
disk with center 0, and radius equal to 2. Also,

T2 ) € JHA) € JO(N).



The sets I™(A:) (or J"(\.))) for 0 <n < 8

In the first two cases, each set I"().) is a connected curve, which you could trace without
removing your pen from the paper. However the sets I"(\4) are not connected when n > 7,
and the individual sets I"(A4) for n = 6,7, 8 are drawn below.



The sets I"(A4) for n=16,7,8.

&0
L4

Theorem: Let ¢ € C with |¢| < 1. Then for all z € C
(z€ J(A\)) <= (z€J"(\) forall n € N).

Proof: If z € JM(),) for all n € N, then |AM(2)] < 2 for all n € N, so O(),, 2) is bounded,
and hence z € J()\.). Conversely, if z ¢ JPI()\,) for some p € N, then |AFI(z)| > 2. By
(8) (together with the assumption |c| < 1), it follows that {AP/(APl(2))} = {A*Pl(2)} is an
unbounded sequence. This sequence is a translate of {A\(2)}, so it follows that {A"(z)}
is also unbounded, and z ¢ J(A.). (Here I've used the fact that if a translate of a complex
sequence is bounded, then the sequence itself is bounded.)

If n is large, I hope J"(\.) is a good approximation to J()\.). In the examples sketched above,
You can probably form a pretty good idea about what J(A_ 1)) and J(\;) look like, but the
shape of J(\4) is less clear. The following pictures give fairly accurate representations for
J(A;) and J(A4). The set J(A_;) was shown above.

J(\) J(\4)



If |c| < 1, T know that all of the sets J™()\,) are contained in the disc with center 0 and
radius 2, which is contained in the Cartesian product [—2,2]x[—2,2] C RxR = C. Let N be
a large integer (for the figures in this note, I always take N = 200). For —2N <i,j <2N -1
let P;; be the square

]Dij:[ ’%]X[}%’%]

2~

I will call the squares P;; pizels (for picture elements). Note that
[-2,2] x [-2,2] = J{P; : —2N <4,j <2N —1}.

The midpoint of the pixel F;; is the point

i+3 j+3
Cij: N y N .

To draw my picture of J™().), I do the following:

For each pair (i, j) with —2N <4, j < 2N —1, I calculate A" (c;;). If [AM(c;;)| > 2, then
cij & J"(\), and in this case I color the pixel P;; white. If A"(c;;) < 2 then ¢;; € J*()\.), and
in this case I color Pj; black. All of my calculations are done on a computer that rounds off
numbers to about 17 decimals, so I do not know how accurate my determination of whether
[Al(c;f)| < 2 is. Also it isn’t clear how large to take n to make J"(\.) “look like” J(\.).
Also I do not know whether my approximation that only looks at (4 - 200)? = 640000 points
really approximates J(\.) very well. But in any case, the pictures are interesting. Here are
some examples.

¢ = .38+ .22, n = 200 c=.39+.231, n =200



c=—4— .59, n=200 ¢ = —.391 — .587¢, n = 1000

N 5 i L ] %‘ 5 : SRR :
c=—4-—.59%,n =200 c = —.391 — .587:, n = 1000
-2<z,y< .2 —2<z,y<.2

The method just described sometimes gives poor representations for sets J(\.) that are
“thin”. The figures below shows the computed values of J"(A.) for which the method does
not work well.



Some properties of J(\.).

i J(X.) is symmetric about 0, i.e. for all z € C,

(zeJ(A)) = (—z€ J(\)).

Proof: We have \.(—z) = \(z) for all z € C, so by induction A"/(—z) = Al"l(2) for all
n € Z>i. Thus O(X;, —z) and O(A, z) differ only in their first term, and one of these
orbits is bounded if and only if the other is. ||

ii If ¢ is real, then J()\.) is symmetric about the real axis, i.e. for all z € C,

(zeJ(A)) = (2" € J(\))-



Proof: If ¢ is real, then ¢ = ¢*, so

AP(2*) = (API(2))* for all n € N.

Thus [A"(2*)] = |AP)(2)] for all n € N, and O(), 2*) is bounded if and only if O()., z)
is bounded ||.

ili For all ¢ € C, J(\.) is not empty.

Proof: We know that Fix(\.) C J(A.). For all z € C. By the quadratic formula we

have

1+
z € Fix(\,) <= Z*+c=2z < z:Ty

where y is a square root of 1 —4c. Since all complex numbers have square roots, Fix(\.)
is never empty, and hence J(\.) is never empty.

We can find lots of points in J(\.) as follows. Let a be one of the fixed points of A\.. We
know that « is in J()\.). Construct a sequence {a,} by the rules

Gy = «

an+1 = one of the solutions of the equation A.(z) = .

(Thus ;41 is one of the square roots of a;, — ¢.) Then every number «, is in J().), and in
fact O(A¢, ay,) is a sequence that converges to « for every n € N.

O(/\C,Cl/o) = {a,a,a,a, v }
O(Ae, 1) {o, 0, 0,0, -}
O()\C,OZQ) - {052,0{1,05,05, o }

The figures below show the first 25000 terms for each of the sequences {«,} and {3,}, where
o= 1+2—‘/5 and g = % are the fixed points for A_;. All of the points in the first figure have
orbits that converge to «, and all of the points in the second figure have orbits that converge
to 8. The two figures appear to be the same. When I plot o, I am actually drawing the
pixel that contains o, and similarly for 8,. Most pixels that contain an «, also contain a
Bg- In the process of plotting 25000 points, many pixels have been colored many times. I
used a random number generator to decide whether a,,;1 should be the square root of o, — ¢

having positive or negative real part.
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You might notice that in the first figure there are no points near +4, while in the second
figure there are points near +4.

If z is a complex number such that the sequence O()\., z) converges, then lim O(\,, z)
must be a fixed point for A.. For suppose {A["/(z)} — L. Then by the translation theorem,

{A(A(2))} = {AI(2)} = L.
Since A is a continuous function, it folows that
L = lim{A\"(2)} = im{X. (A (2))} = A\(L),

i.e. L € Fix(\).

Notes: The sets J(\.) are closely related to sets called Julia Sets, named after Gaston Julia
(1893-1978), who studied their properties around 1918 (with no computer graphics).
Julia sets can be defined for any function f € Map(C). Some beautiful julia sets for
rational functions that are not quadratic polynomials can be found at
http://www.ijon.de/mathe/julia/some_julia_sets_1
http://www.ijon.de/mathe/julia/some_julia_sets_2
http://www.ijon.de/mathe/julia/some_julia_sets_3
http://www.ijon.de/mathe/julia/some_julia_sets_4
Julia sets for functions of the form f(z) = C'sin(z) can be found at
http://astronomy.swin.edu.au/ "pbourke/fractals/sinjulia

You can draw your own sets J(A.) at the URL
http://math.bu.edu/DYSYS/applets/Quadr.html
You enter the real and imaginary parts of ¢ in the appropriate box, and enter the numer
of iterations in the appropriate box, and then press the “compute” button. On my machine
this program takes a considerable amount of time to load and to compute.



