Chapter 12

Power Series

12.1 Definition and Examples

12.1 Definition (Power Series.) Let {a,} be a sequence of complex num-
bers. A series of the form > {a,2"} is called a power series.
We think of a power series as a sequence of polynomials

2 2 3
{ag, ap + a1z, a9 + a1z + as2”, ag + a1z + agz” + azz®, - - -}.

In general, this sequence will converge for certain complex numbers, and di-
verge for other numbers. A power series Y {a,2"} determines a function whose
domain is the set of all z € C such that Y {a, 2"} converges.

12.2 Examples. The geometric series Y {z"} is a power series that con-

1
verges to : for |z] < 1 and diverges for |z| > 1.
—z

(_1)n 2n )n 2n+1
The series C = Z {W} and S = Z{ o T 1)1 } are power se-

ries that converge for all z € C. C' corresponds to the sequence

1 1
=11 i ..
{an} { ’0’ 250a 24a }

and S corresponds to

1 1
nf — 071707__:07—7"' .
{an} { 6120 }

The limits are cos z and sin z, respectively (by definition 11.43.)

226
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Every power series > {a,2"} converges at z = 0. (The limit is ay.)

The series Y {n!2"} converges only when z = 0 (see exercise 12.5).

b

12.3 Notation (a®") The expression a* is ambiguous. Since

22") = 28 = 256,

and
(2%)° = 4* = 64,

we see that in general a®) # (a?)°. We make the convention that

a* means a*).
The expression (a®)” is usually simplified and written without parentheses by
use of theorem 3.64:

((J,b)c — CL(bc) — a,bc_

n2

12.4 Example. 1 would like to consider the series Z {Z—Q} to be a
n n>1

power series. This series corresponds to Y {c,2"} where

1 1
n = 0,1,0,0,—,070’070’_’...
(6} = 0.1.0.010.000%
4 4
z{cnzn} = {0, Ry RyRy R + %,Z—i— ZZ’ . .}’

which is not identical with

n2 n>1_ ) 4’ 4 9’ bl

but you should be able to see that one series converges if and only if the other
does, and that they have the same limits. In the future I will sometimes blur
the distinctions between two series like this.

n

For z # 0, let a, = 2—2 Then
n

2

2
N +2n+1 n

(n+1)2

‘an+1| _
[

— |Z|2n+1( n )2‘
n+1

2n?
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2
If |2| < 1, then |z|>"*! (%) < |z[**! and lim{ ‘T"+|1|} =0<1,soby
n On n>1

n2

z
the ratio test, — converges absolutely for |z| < 1.
n? &
n>1

If |z] > 1 and n > 1, then

2n+1 1 ’ 2n+1 1
= |2] 1- > [2[™ - 2
(n+1) 4

> 1 for large n, and the series diverges. If |z| = 1, then |a,| =

Ap+1
Qp

|an+1|
[

5
n?

n2

. z
so Y {|an|} converges by the comparison test, and »_ {—2} converges
n
n>1

absolutely. This shows that the function
) 2"2
f(z) = 7«;1 Py

is defined for all z € D(0,1), and determines a function from D(0,1) into C.

The figure on page 229 shows the images under f of circles of radius I for

1 < 7 < 10 and of rays that divide the disc into twelve equal parts. The
images of the interior circles are nice differentiable curves. The image of the
boundary circle seems to have interesting properties that I do not know how
to demonstrate.

12.5 Exercise.

a) Show that > {n!z"} converges only for z = 0.

2n

b) Show that > {Z—n} converges if and only if |z| < 1. ||
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00 ZZ“
n=0 .
The figure on page 230 shows the images under g of circles of radius 1]—0
for 1 < 7 <10, and of rays that divide the disc into 12 equal parts.
00 ZZ"
12.6 Exercise. Let g(z) =) o for |z| < 1. It appears from figure on
n=0

page 230 that g(—1) = 0, and g¢(4) is pure imaginary. Show that this is the
case.
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12.7 Entertainment. It appears from the image of g(z) = ) o that if
n=0

1 3
w=g+ 27 (a cube root of —1), then g(w) is pure imaginary, and has length

a little larger than the length of g(i). Show that this is the case. (From the
fact that w3 = —1, notice that

4

{wl’ w2, w ,wS, w16, w32, w64, .. } — {w, w2, —w, w2, —w, w2, —w, - })
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12.2 Radius of Convergence

12.8 Theorem. Let > {a,2"} be a power series. Suppose Y {a,w™} con-
verges for some w € C\{0}. Then Y {a,2"} converges absolutely for all
z € D(0,|w]).

Proof: Since Y {a,w"} converges, {a,w™} is a null sequence, and hence is
bounded. Say |a,w"| < M for all n € N. Let z € D(0, |w|), so |z| < |w|, and
letRz% < 1. Then for all n € N

w

z n
la,2"| = |anw™| —‘ < MR".
w
Now > {MR"} is a convergent geometric series, so by the comparison test,
> {|a,2"|} converges; i.e., > {a,2"} is absolutely convergent. ||

12.9 Corollary. Let > {a,z"} be a power series. Suppose >{a,w"} diverges
for some w € C. Then Y {a,z"} diverges for all z € C with |z| > |w].

Proof: Suppose |z| > |w|. If >{a,2"} converges, then by the theorem,
> {a,w"} would also converge, contrary to our assumption. ||

12.10 Theorem. Let > {c,z"} be a power series. Then one of the following
three conditions holds:

a) Y{cn2"} converges only when z = 0.
b) >{cnz"} converges for all z € C.

c¢) There is a number R € R" such that Y>-{c,2"} converges absolutely for
|z| < R and diverges for |z| > R.

Proof: Suppose that neither a) nor b) is true. Then there are numbers
w,v € C\{0} such that > {c,w™} converges and > {c,v"} diverges. If ¢ = @,
and b = 2|v|, it follows that > {c,a™} converges and Y {c,b"} diverges. By a
familiar procedure, build a binary search sequence {[ay, bx|} such that [ag, b
= [a,b], and for all £ € N, >{c,a}} converges and > {c,b}} diverges. Let R
be the number such that {[ax, br]} — R. Then a;, < R < by, for all k € N and
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lim{ax} = lim{b;} = R.
If |z| < R, then for some k£ € N we have |ay — R| < R — |2|, and

lag —R|<R—|z| = ax>R— (R~ |2]) =]
= Y {ca7*} converges.

If |z| > R, then for some k € N we have |by — R| < |z| — R, and

by — R| < |z| —R = b, <R+ (2| -R)=|7|
= > {cn2"} diverges. ||

12.11 Definition (Radius of convergence.) Let {} c,z"} be a power
series. If there is a number R € R™ such that >{c,2"} converges for |z| < R,
and diverges for |z| > R, we call R the radius of convergence of Y {c,z"}. If
> {cn2"} converges only for z = 0, we say >_{c,2"} has radius of convergence 0.
If Y {c,2"} converges for all z € C, we say > {c,2"} has radius of convergence
00.

If a power series has radius of convergence R € R, I call D(0, R) the
disc of convergence for the series, and I call C(0, R) the circle of convergence
for the series. If R = oo, I call C the disc of convergence of the series (even
though C is not a disc).

n!(2n)!
will apply the ratio test. Since the ratio test applies to positive sequences, I

1.7
(3n)'z for all n € N. Then for
n!(2n)!

3n)!z"
12.12 Example. I will find the radius of convergence for Z { (Bn)tz } I

will consider absolute convergence. Let a,, =

all z € C\ {0},

ansa| _ Bt DM nl@a)! (304 DEn+2)En+3)

n+D!I2(n+1) @Bn)lz» (n+1)2n+1)(2n+2)
B+2)B+2)(3+ §)| |
.y z|.

n

2+7)2+2)

Hence

|apt1] 3-3-3 27|z|
all 30303, 2k
] 1-2-2 4

By the ratio test, >{a,} is absolutely convergent if |z| < 5=, and is divergent

if [z| > 5. It follows that the radius of convergence for our series is .
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12.13 Exercise. Find the radius of convergence for the following power
series:

a) Y {3"vnz"}u>1.
W 2{5]

nn
12.14 Exercise. Let r be a positive real number.
a) Find a power series whose radius of convergence is equal to .
b) Find a power series whose radius of convergence is co.

¢) Find a power series whose radius of convergence is 0.

12.3 Differentiation of Power Series

If >>{cn2"} = {cp,co+c12,co+ 12+ cp2?, - - -} is a power series, then the series
obtained by differentiating the terms of > {c,2"} is

Z{cnnzn_l} ={0,¢1,¢1 + 2632, ¢1 + 2c02 + 3c32?, - - -}
This is not a power series, but its translate
Z{cn+1(n +1)2"} = {c1, 1 + 2¢02, €1 + 2092 + 3c32?, -+ -}
is.

12.15 Definition (Formal derivative.) If > {c,2"} is a power series, then
the formal derivative of > {c,2"} is

D(Y{enz"}) = Ydenn(n+1)2").

I will sometimes write D(3{c,2"}) = > {c,n2""'} when I think this will cause
no confusion.

12.16 Examples.

D {z"Y) = Y An" '} =2 {(n+1)"}
= {1,1+22,1+22+32%---}.
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1)22n+1
CREI =)
23 23 23 25
= ((Jzzz 3', 5,2—3'+5!,---}>

22 P
- {1’1’1 . LA
(

() E ) ) e

Our fundamental theorem on power series is:

12.17 Theorem (Differentiation theorem.) Let > {a,2"} be a power se-
ries. Then D(}>{a,z"}) and (> {anz"}) have the same radius of convergence.
The function f associated with >-{a,2z"} is differentiable in the disc of conver-
gence, and the function represented by D(>{a,2™}) agrees with f' on the disc
of convergence.

The proof is rather technical, and I will postpone it until section 12.8. I
will derive some consequences of it before proving it (to convince you that it
is worth proving).

12.18 Example. We know that the geometric series Y {z"} has radius

of convergence 1 and f(z Z " for |z| < 1. The differentiation

theorem says D(}>{z"}) = E{nz” 11 also has radius of convergence 1, and
o o
=> n""'=>"(n+1)2" for 2| < 1;
= n=0
ie.,

1
2" = —— for |z| < 1.
n=0 (1 - Z)2
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We can apply the theorem again and get

> 2
D(n)z" = ——— f <1
g(n +1)(n)z L or |z| < 1,
o > 1 2 1
Z(n+ J(n+ )z": 5 for [z < 1.
n=0 2 (1 _'Z)
Another differentiation gives us
00 1 2 n—1
Zn(n—lr Jn+2)z" 3 or |2 <1,
= 2 (1-2)
o > 1 2 3 1
Z(n+ J(n+2)(n+ )z”:ﬁfor|z|<1.
— 3! (1-2)
The pattern is clear, and I omit the induction proof that for all £k € N
1 B i(n+1)(n+2)(n+3)---(n+k)zn
I—2 = & K
ad k)!
= Z(n+ )z”for|z\<1.
= nlk!
12.19 Exercise. By assuming the differentiation theorem, we’ve shown
(n+k)!

that the series > { (
Verify this directly.

g ) z”} has radius of convergence 1 for all £ € N.

(o @] (o @]

12.20 Exercise. Find formulas for Z nz" and Z n%z" that are valid for
n=0 n=0

|z| < 1. (You may assume the differentiation theorem.)

12.21 Example. By the differentiation theorem, if

Cz) = é 7(_(2”; " and S(z) = 27((_21737? 1")! |

then C and S are differentiable on C and C’(z) = —S(z), and S'(z) = C(z).
(We saw in earlier examples that both series have radius of convergence oo,
and that the formal derivatives satisfy DS = C and DC = —S.) Also, clearly
C(z) and S(z) are real when z is real. The discussion in example 10.45 then
shows that for real z, C' and S agree with the cosine and sine functions you
discussed in your previous calculus course, and in particular that

sin? z + cos?z =1 for all z € R.
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12.4 The Exponential Function

12.22 Example. Suppose we had a complex function F such that F is
everywhere differentable and

E'=FE, and E(0) = 1. (12.23)
Let H(z) = E(z)E(—=z) for all z € C. By the chain and product rules,
H'(z) = E'(2)E(—2) + E(2)[-E'(—2)] = E(2)E(—2) — E(2)E(—2) =0
on C, so H' is constant. Since H(0) = E(0)E(0) = 1, we conclude
E(z)E(—z) =1for all z € C. (12.24)
In particular E(z) is never 0, and
E(—z) = (E(z))”" forall z € C.
Now let a € C and define a function H,: C — C by
H,(z) = E(z+ a)E(—2).
We have

Hy(2) = E'(z+a)E(=2) + E(z + a)[-E'(-2)]
= E(z+a)E(—2)— FE(z+a)E(—2) =0

for all z € C, so H, is constant, and H,(0) = E(a)E(0) = E(a). Thus
E(z+a)E(—%2)=E(a) forall z € C, a € C,

and by (12.24),
E(z+a)=FE(a)E(z) forall z€ C, a € C. (12.25)

Next suppose you know some function e:R — R such that €'(t) = e(t) for
all t € R and e(0) = 1. (You do know such a function from your previous
calculus course.) Let

K(t) = E(—t)e(t) for all t € R.
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Then by the product and chain rules,
K'(t) = [-E(-t)]e(t) + E(—t)e(t) = 0 for all t € R,

so K is constant on R, and since K (0) = E(0)e(0) = 1, we have E(—t)e(t) = 1.
By (12.24),
e(t) = E(t) for all t € R.

Now I will try to construct a function E satisfying the differential equation
(12.23) by hoping that E is given by a power series. Suppose

E(z) = a + a2+ a2® + a3z +agzt--- for all z € C.
E(0) = a+0+0+---.

Since E(0) = 1, we must have ag = 1, and
E(z) =1+aiz + a2 +a32® + asz* + .
By the differentiation theorem,
E'(2) = a1 + 2a92 + 3a32” + das2® + -+ -,

and
a; = E'(0) = E(0) = 1.

By the differentiation theorem again,
El(z) :2'1a2+3'2a32—|—4-3a422+...’

SO
1
2-1ay = E’(O) =E(0)=1and ay = R
Hence
E(z)=FE'(z) =1+3-2a32 4+ 4-3a,22 +---.

Repeating the process, we get
E'(2)=3-2-lag+4-3 - 2a42z+ - -,

SO
1

3-2-1

3-2-1la3=FE'(0) = FE(0) =1 and a3 =

I see a pattern here: a, = -
n!
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12.26 Definition (Exponential function.) Let E denote the power series

2" 22 2"
Z {—,} =<1+2z+ o1 + -4 —'} We will show in exercise 12.31 that F

has infinite radius of convergence. We write

E(z) =exp(z) = > % for all z € C.
n=0 """

12.27 Theorem. exp’ = exp and exp(0) = 1.

Proof: It is clear that exp(0) = 1. The formal derivative of E is

n!

so the [still unproved] differentiation theorem says that exp’ = exp. It follows
from our discussion above that exp(z) is never 0,

exp(—z) = (exp(z)) " for all z € C, (12.28)

and
exp(a + z) = exp(a) exp(z) for all z € C. (12.29)

It is clear that exp(z) is real for all z € R. In fact, we must have exp(z) € R"
for all z € R, since exp is continuous (differentiable functions are continu-
ous) and if exp(t) < 0 for some z, the intermediate value theorem would say
exp(y) = 0 for some y between 0 and ¢. Since exp’(t) = exp(t) > 0 on R, exp
is strictly increasing on R. ||

12.30 Definition (e.) We define e to be the number exp(1); i.e., e = e
n=0 """

n

12.31 Exercise. Show that Z { } has infinite radius of convergence.

z
n!
12.32 Exercise. Use the definition of e to show that e > 2.718.

12.33 Exercise.

a) Show that exp(nz) = (exp(z))” for alln € N, z € C.
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b) Show that exp(nz) = (exp(z))" for all n € Z, z € C.
12.34 Exercise. From the previous exercise, it follows that
exp(nz) = (exp(z))" forall z € C, n € Z.

Use this to prove that
exp <§t> = (exp(t))g forallt e R, pe Z, g€ Z;

ie.,
exp(rt) = (exp(t))" forallt € R, r € Q.

(Note that for ¢ = 1, this says

T

exp(r) = (exp(1))" =€

12.35 Notation (e*.) Another notation for exp(z) is e*. This notation is
motivated by the previous exercise. With this notation, we have

et = e%e® forall z,a € C.

()™t = e #forall z€C.
()" = e forallt e R, r € Q.

12.36 Theorem. Every number t € RT can be written as t = exp(s) for a
unique s € R.

Proof: The uniqueness of s follows from the fact that exp is strictly increasing
2

t
on R. Let ¢t € (1,00). From the expansion exp(t) =1+t + o T we

see that exp(t) > ¢. Since exp is continuous, we can apply the intermediate
value theorem to exp on [0,t] to conclude ¢ = exp(s) for some s € (0,t). If

t € (0,1), then ;€ (1, 00), so ;= e’ for some s € (0,00), and ¢t = e * where

—5 € (—00,0). Since 1 = €°, the theorem has been proved in all cases. ||
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12.5 Logarithms

12.37 Definition (Logarithm.) Let ¢t € R". The logarithm of t is the
unique number s € R such that e* = ¢. We denote the logarithm of ¢ by In(¢),

Hence
e =t for all t € RY. (12.38)

12.39 Remark. Since In(e") is the unique number s such that e’ = €", it
follows that
In(e") =r for all € R. (12.40)

12.41 Theorem. For alla,b € RY,
In(ab) = Ina + Inb.
Proof:

In(ab) = In(e™*-e™?) (by (12.38))
ln(e(ln a+In b))

= Ina+1Inb (by (12.40)). |
12.42 Exercise. Show that
a) In(a™!) = —In(a) for alla € R™.
b) In(a") = rIn(a) for alla € R*, r € Q.
c) In (%) =1Ina—Inb for all a,b € R*.

12.43 Remark. It follows from the fact that exp is strictly increasing on R
that In is strictly increasing on R*: if 0 < ¢ < s, then both of the statements
In(¢) = In(s) and In(¢) > In(s) lead to contradictions.

12.44 Theorem (Continuity of In.) In is a continuous function on R,

Proof: Let a € R", and let f be a sequence in R such that f — a. I want to
show that Inof — In(a). Let Ny_; be a precision function for f —a. I want

to construct a precision function M for Inof — In(a).
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Scratchwork: For all e € R, and all n € N,

|In(f(n)) —In(a)| <& <= In(a) —e <In(f(n)) <In(a)+¢
— eln(a)—s < f(n) < eln(a)—|—5
— M _g < f(n)—a< en@+e _ g
Note that since In is strictly increasing, e™®+¢ — g and a — e™®~¢ are both
positive. This calculation motivates the following definition:
For all e € R™, let

M({;‘) — maX(Nf_&(eln(a)-f—E _ CL), Nf_&(a _ eln(a)—e)).
Then for alln € N, e € RT,

f(n) —a < |f(n) —a| < e@* —q
a—f(n) <|f(n) —al <a—eoe
— 6ln(a)—s < f(n) < 6ln(a)+s

= In(a) —e <In(f(n)) <In(a) +¢

= |[In(f(n)) —In(a)| < e

n>MeE) = {

Hence M is a precision function for Inof — h;(va). I

12.45 Theorem (Differentiability of In.) The function n is differentiable
on RT and

1
In'(z) = - for allz e R,
Proof: Let a € R' and let {z,} be a sequence in R"\{a}. Then
In(z,) —In(a)  In(z,) —In(a) 1

[ — - eln(zn) _ eln(a) - (eln(Wn)felﬂ(a)) ’
In(z,)—In(a)

(Note, I have not divided by 0.) Since In is continuous, I know {In(z,)} — In(a),

and hence
eln(wn) _ eln(a)

In(z,) — In(a)

hmFm%yJMM}:L

Ty —Q

} — exp’ (In(a)) = @ = q.

Hence,
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ie.,

fi 2(z) —Infe) _ 1
gma g —q a

1
This shows that In'(a) = —.
a

12.6 Trigonometric Functions

Next we calculate exp(it) for ¢t € R.

o
exp(it) = Z teR.
Now {i"} = {1,4,—1,—4,1,4,—1, —i,- - } and it is clear that (i)*® = (—1)" € R,
(1)*"*1 = 4(—1)" is pure imaginary. Hence,

Re(exp(it) = >0 cogy
e (exp(it)) = ———=c
= (29)!
[ 00 1)]t2]+1
it)) = = sint;

m (exp(it)) z e

ie.,
exp(it) = cost +isint for all t € R. (12.46)

For any complex number (z,y) = x + iy, we have
exp(z +iy) = exp(x)exp(iy) = exp(z)[cos(y) + isin(y)]
= exp(x)cos(y) + iexp(z) sin(y).

Since your calculator has buttons that calculate approximations to exp, sin and
cos, you can approximately calculate the exponential of any complex number
with a few key strokes.

The relation (12.46)

exp(it) = cost + isint
actually holds for all ¢ € C, since

Z ) 22 n(—1)iz%

= —~ (2] + 1)

(i)2j+122j+1

(2j +1)!

j
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Hence
e¥ =cosz+isinz for all z € C,

SO
e ¥ =cosz—1isinz for all z € C.

We can solve (12.47) and (12.48) for sin(z) and cos(z) to obtain

cos(z) = % for all z € C.

%1 —12

sin(z) = 27; for all z € C.
From (12.47) it follows that

e =1 for all t € R,
i.e., e is in the unit circle for all t € R.

12.51 Exercise (Addition laws for sin and cos.) Prove that

cos(z +a) = cos(z)cos(a) — sin(z)sin(a)

sin(z+a) = sin(z)cos(a) + cos(z) sin(a)

for all z,a € C.

By the addition laws, we have (for all z,y € C),
cos(x + iy) = cos(z) cos(iy) — sin(z) sin(iy)

sin(z + iy) = sin z cos(iy) + cos z sin(iy).
By (12.49) and (12.50)
ez(zy) + efi(iy) ey +eY

cos(iy) = 5 =

and

o W) _ e=illy) o=y _ oy (oY _ 7Y
sin(iy) = 5; = =il

243

(12.47)

(12.48)

(12.49)

(12.50)

(12.52)

(12.53)
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12.54 Definition (Hyperbolic functions.) For all z € C, we define the
hyperbolic sine and hyperbolic cosine of z by

sinh(z) = c _26
cosh(z) = %

Note that if z is real, sinh(z) and cosh(z) are real. Most calculators have
buttons that calculate cosh and sinh. We can now rewrite (12.52) and (12.53)
as

cos(z +1iy) = cos(x)cosh(y) —isin(z)sinh(y)
sin(z +14y) = sin(x)cosh(y) + 7 cos(z) sinh(y).

These formulas hold true for all complex = and y.

Since
sin’ = cos, cos' = —sin, sin(0) =0 and cos(0) =1,

it follows from our discussion in example 10.45 that

x3 x2 ozt

in(z) >z — = and <1-Z %
sin(z) >z o and cosz < 2+24

for all z > 0. In particular

2

sin(ac)Zx(l—%>>OforO<x<\/é

and
(2) <1 : + 10 <0
cos 5 T35 <0
Hence cos’ = —sin < 0 on (0, 2), so cos is strictly decreasing on [0, 2]. More-

over cos is continuous (since it is differentiable) so by the intermediate value
theorem there is a number ¢ in (0, 2) such that cos(c) = 0. Since cos is strictly
decreasing on (0, 2) this number c is unique. (Cf. exercise 5.48.)

12.55 Definition (7.) We define the real number 7 by the condition g is

the unique number in (0, 2) satisfying cos (g) = 0.
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12.56 Theorem. exp is periodic of period 2mi; i.e.,

exp(z + 2mi) = exp(z) for all z € C.

Proof: Since sin?t + cos’t = 1 for all t € C, we have sin® (g) =1, so

sin (g) = +1. We have noted that sint > 0 on (0, 2) so sin (g) = 1. Hence

e%r = oS (W) + 2 sin <7r> =1
- 2 2)

i

= (%) =it =1. (12.57)

It follows that e?™+% = ¢?Mie? = 1e* = ¢* for all z € C. ||

and

12.58 Entertainment. If Maple or Mathematica are asked for the numer-
ical values of (—1)%>1* and 7', they agree that

(—1)*14 = —.9048 - — 4 -.4257 - -

and .
7t = .2078 ..

Can you propose a reasonable definition for (—1)? and i* when z is an arbitrary
complex number, that is consistent with these results? To be reasonable you
would require that when z € Z, (—1)* and 4* give the expected values, and

(1"t = (=1)*(—-1)" for all z,w € C,
(1) = %" for all z,w € C.

12.59 Exercise. Prove that:

a) cosm = —1, and sin7m = 0.

b) cos 3; = 0, and sin 37# =—1.

¢) cos2m = 1, and sin 27 = 0.

d) sin(2r —t) = —sint for all t € C.

e) cos(2mr —t) = cost for all ¢t € C.
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f) sin(m —t) = sint for all t € C.

g) cos(m —t) = —cost for all t € C.
h) sin(27 +¢) =sint for all ¢ € C.
i) cos(2m +t) = cost for all t € C.

12.60 Theorem. cos(27) =1 and cost <1 for 0 <t < 2.

Proof: From the previous exercise, cos(2m) = cos(0) = 1. We've noted that
sint > 0 for ¢ € (0, %],
m m
te (g,w) = §<t<7r == 0<7r—t<§
= sin(r —1¢) >0
= sin(¢) > 0.

Hence sin(¢) > 0 for ¢t € (0,7). Hence cos'(t) = —sin(t) < 0 for t € (0,7).
Hence cos is strictly decreasing on (0,7). Hence cos(z) < cos(0) = 1 for all
z € (0,m).

Now

te(m2r) = n<t<2r = 0<2r—t<n7
= cos(2r—1t) <1
= cost <1,

and since cos(m) = —1 < 1, we’ve shown that cost < 1 for all ¢ € (0, 27). ||

12.61 Theorem. FEvery point (z,y) in the unit circle can be written as
(z,y) = € for a unique t € [0,27).

Proof: We first show uniqueness.

Suppose (z,y) = x + iy = e = €' where s,t € [0,27). Without loss of
generality, say s < t. Then

oit ()
- — wWl—S) ___ A
1—6?—6 =cos(t — s) +isin(t — s),

and t — s € [0,27). By the previous theorem, 0 is the only number in [0, 27)
whose cosine is 1, so t — s = 0, and hence t = s.
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Let (z,y) be a point in the unit circle, so z>+y? = 1, and hence —1 < z < 1.
Since cos(0) = 1 and cos(m) = —1, it follows from the intermediate value
theorem that x = cost for some t € [0, 7]. Then

y> =1—212° =1 — cos’(t) = sin®(t),
so y = *£sin(t).

y =sint = (z,y) = (cost,sint) = ¢"

y=—sint = (z,y) = (cost,—sint) = (cos(2m — t),sin(27 — t)) = €

and since ¢t € [0, 7], we have 27 —t € [, 27]. ||
12.62 Lemma. The set of all complex solutions to e* =1 is {2min : n € Z}.
Proof: By exercise 12.59
e¥™ =cos2m +isin2r =140 = 1,

SO
p2min _ (ezm')" — 1" =1
Let w = (a,b) = a + ib be any solution to e* = 1; i.e.,

_ _a+tbi __ _a_ib
l=¢ =c"e

By uniqueness of polar decomposition,

e =1ande® =1,

b
so a = 0 (since forreal a, e* =1 <= a = 0). We can write 9. =" + € where
T

n € Z and ¢ € [0,1) by theorem 5.30, so b = 27n + 27e where 27e € [0, 27).
Now

1= ezb — 627rm—|—z27r5 —e

27Ti6.
By theorem 12.61, 2mic =0, so € =0, and b = 27n; i.e., w = 27win. ||

12.63 Definition (Argument.) Let a € C\{0} and write a in its polar
decomposition a = |a|u, where |u| = 1. We know u = e for a unique
A € [0,27m). I will call A the argument of a and write A = Arg(a). Hence

a = |ale8@) A €0,2n).
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12.64 Remark. Our definition of Arg is rather arbitrary. Other natural
definitions are

Arg, (z) is the unique number @ in [—7,7) such that z = |z]e™®,

or
Arg,(z) is the unique number b in (—, 7] such that z = |z|e®.

None of these argument functions is continuous; e.g.,

{e_Thr }n21 — 1.

{Arg (e_n”)}n21 = {(27T - g) }n>1 — 21 # Arg(1).

12.65 Theorem. Let a € C\{0}. Then the complex solutions to the equa-
tion e = a are exactly the numbers of the form

z = In|a| + iArg(a) + 2min where n € Z.
In particular, every non-zero a € C is the exponential of some z € C.

Proof: Since
e(ln\a|+zArg(a)+2mn) — eln\a|ezArg(a)62mn

iArg(a)

= |ale =aq,

the numbers given are solutions to e* = a. Let w be any solution to ¥ = a.
Then e 'nlel~iArg(a) — ¢ — 1 Hence, by the lemma 12.62,

w — In |a|] + iArg(w) = 2win for some n € Z. ||

We will now look at exp geometrically as a function from C to C.
Claim: exp maps the vertical line x = z; into the circle C(0, e®).
Proof: If z = zy + iy, then

€] = e = [eme| =[] ] = €.
Claim: exp maps the horizontal line y = yy into the ray through 0 with

direction e™o°.
Proof: If z = x + 4y, then

e? = T = e . W0 gand €% > 0.

Since exp is periodic of period 27i, exp maps an infinite horizontal strip of
width w into an infinite circular segment making “angle w” at the origin.
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The Exponentials of Some Cats

exp maps every strip {(z,¥): ¥ < y < yo + 27} onto all of C\{0}.

12.66 Theorem (Roots of complex numbers.) Let a € C\{0} and let
n € Z". Then the solutions to 2" = a in C are eractly the numbers

Arg(a)+2nk

z—|a|ne( z )wherekEZandO§k<n.
(These numbers are distinct.)

Proof: These numbers are clearly solutions to 2" = a. Let w = |w|e**™8®) be
any solution to z" = a. Then

|w["e™mATEW) =y = g = |ae™ATE@),

By uniqueness of polar decomposition,

|,w|n — ‘CL‘ and einArg(w) — eiArg(a)’
ie., |w| = |a|'/ and e"Are(w)-Are()] — 1. Hence, nArg(w) — Arg(a) = 27k for
some k € N and
A 21k
Arg(w) = Arg(a) + 2mk for some k € N.

n
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Thus

. -( Arg(a)+2nk
tArgw __ 61(7

e ) for some k£ € N.
For each k£ € Z, the number
1 iArg(a) 2rik

wk:‘w|ﬁe n e n

2mik
is a solution to w™ = a. For 0 < k < n, the numbers —— are distinct
n

numbers in [0, 27), so the numbers e are distinct. For every K € Z,
K
— =M +¢c where M € Z and € € [0,1), so K = nM + en where en € [0,n)
n
and en = K —nM € Z; i.e.,

K=nM+kwhere k€ Z and 0 < k < n.

Then £ =M+ £ 5o

K ) 2mik 2mik
¥ = MM —en where k€ Zand 0 < k < n. ||

12.7 Special Values of Trigonometric Functions

We have
coS (Z) = COoS (E — z) —COSECOSE—{—SiHESinE —sini
4) 2 4/ T2 774 27 4 4
Hence 1 = cos? (%) + sin® (%) = 2sin’ (%), and hence
1 2
(cos %) = sin (%) =+ 5= :I:%. Since we know sin is positive on (0, 7),

we conclude that
cos (E) = sin <E> = Q
4) 4) 27

Observe that if ¢ € R, then the problem of calculating cos(t) and sin(¢) is
the same as the problem of calculating e. Let n € Z*. We know that the
complex solutions of z” —1 =0 are

{eQZik:O§k<n, ke Z},
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so if we can express the solutions to 2" — 1 = 0 in algebraic terms, then we

27k 2k
can express sin (L) and cos <L> in algebraic terms. We have
n n

#-1=0 = (*-1)(’+1) =0 <= (2-1)(Z®+2+1)(2+1)(z*—2+1) = 0.

Here z = 1 and z = —1 are obvious sixth roots of 1, and the other four roots
are the solutions of the quadratic equations

24+z4+41=0and 22— 2+1=0.

12.67 Exercise. Find the solutions to 22 +2z+1=0and 22 —2+1=0
in terms of square roots of rational numbers. These solutions are

s s 27i 4ni 5mi

{@_’GT’QT’Q 3 }

Identify each solution with one of these exponentials. Find cos (g) and

. (71-)
simm\| — .
3
12.68 Exercise. Use the fact that

i —
2

- €

wf,

i
e6 — e

to find cos — and sin . I
6 6

2 2
The numbers cos (%) and sin (g) can also be expressed algebraically.
If 2z=¢5, then 2° — 1 =0, so
(z=1)(*+2+22+2+1)=0

and since z # 1,
(422 +22+z24+1)=0.

The fact that 25 = 1 says 27! = 2* and 272 = 2%, so

l+z+2t+22+272=0;
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ie.,
—4mi

2mi —2mi 4mi
1+e5 +e 5 +e5 +e 5 =0,

2 4
1+ 2cos (%) + 2 cos (—W) =0.

or

5
Now for all z € C,

c0s(22) = cos(z+2) = cos?(z)—sin?(z) = cosQ(z)—(l - cosQ(z)) = 2cos?(2)—1,

SO

2 2
1+ 2cos (Eﬁ) +2 (2 cos? (g) . 1) = 0. (12.69)
2m ) . )
Hence cos <€> satisfies a quadratic equation.

12.70 Exercise.

2 2
a) Solve (12.69), and determine cos (%) and sin (%) in algebraic terms.

2n
b) The quadratic equation has two solutions, one of which is cos (€> What
is the geometrical significance of the other solution?

2
12.71 Entertainment. The algebraic representation for cos “T) shows

that a regular pentagon can be inscribed in a given circle. Let a circle be
2
given, and call its radius 1. If you can construct cos (—) with compass and

n
straightedge (see the figure), then you can construct a side of a regular n-gon

inscribed in the circle (and hence you can construct the n-gon).

(cos 2%, sin 27)

ide of n-gon

cos &
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27 3
For example, since cos (E) = 5> We can construct a dodecagon as follows:
A
00 i B

L

Construction of a Dodecagon

In the figure, make an arc of radius 2 with center at A, intersecting the
2
z-axis at B. Then OB = /3, so if C bisects OB, then OC = cos (%), and

the vertical line through C' intersects the circle at E where IE is a side of the
12-gon.

2
Use the formula for cos (%) to inscribe a regular pentagon in a circle.
12.72 Entertainment. (This problem entertained Gauss. It will probably
not really entertain you, unless you are another Gauss.) Show that a regular
17-gon can be inscribed in a circle using compasses and straightedge.

Gauss discovered this result in 1796 [31, p 754] when he was a nineteen
year old student at Gottingen. The result is [21, p 458|

o 11 1
Y o VT 4+ — 34— 2V
C05(17) TRETARRTAL 7
1
+§\/17+ 3VAT — /(34 — 2v17) — 24/34 + 2V1T.

12.8 Proof of the Differentiation Theorem

12.73 Lemma. The power series Y {nz"} has radius of convergence equal
to 1.
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12.74 Exercise. Prove lemma 12.73. (We proved this lemma earlier using
the differentiation theorem. Since we need this result to prove the differen-
tiation theorem, we now want a proof that does not use the differentiation
theorem.)

12.75 Lemma. Let > {a,z"} be a power series. Then the two series Y- {a,z"}
and Y{na,z""'} have the same radius of convergence.

Proof: T'll show that for all w,v € C\{0}.
a) If > {|na,w™'|} converges, then {3 |a,w"|} converges.
b) If {|a,w™|} converges and |v| < |w|, then >{|na,v" !} converges.
a) follows from the comparison test, since
la,w"| < |na,w" |- |w| for all n € Z*.

To prove b), suppose > {|a,w"|} converges and |v| < |w|. By lemma 12.73,

Z{n v } is bounded. Choose M € R*
w

such that

w

} converges, and hence <n

< M for all n € N.

r v
n JE—
w
Then n|v|™ < M|w"|, and
M
‘ann\v\”_l‘ < lapw™| - ol for all n € N.
v
By the comparison test, > {|a,nv™ |} converges. ||

12.76 Corollary. > {a,z"} and S{a,n(n —1)z""?} have the same radius
of convergence.

Proof: Use the lemma twice. ||

12.77 Theorem. Let > {c,2"} be a power series with positive radius of con-
[ee]

vergence. Let f(z) = Z cp2" for all z in the disc of convergence for f and

n=0
o0

let Df(z) = Z nepz! be the function corresponding to the formal deriva-
n=1

tive of Y{cy2"}. Then f is differentiable on its disc of convergence, and

f'(a) = Df(a) for all a in the disc of convergence.



12.8. PROOF OF THE DIFFERENTIATION THEOREM 255

Proof: Let a be a point in the disc of convergence, and let z be a different
point in the disc. Then

f(2)— fla) = f: i

o0
= > ez —a" (since 2° = a°)
n=1
0 n—1 o
= Y alz—a)d) 2" d
n=1 j=0

= z—ai RE: ~1=igd,
n=lj

Let o
of(2) = e 2"
n=1  j=0
Then
f(z) = f(a) = (z = a)Duf(2)
and since

chZa” ! chna = Df(a),

n=1 j=0
the theorem will follow if we can show that Da f is continuous at a.
In the calculation below, I quietly use the following facts:

n—1 n—1
a) When n =1, Y 2" '7al — Y a" 'l =0

=0

b) When j =n—1, 2" 77 — g7 = .

o] n—1 o o] n—1 o
Dof(2) = Dof(a) = D_cad 2" "d =Y ¢, > a"

n=1 7=0 n=1 7=0
0 n—1

= ch a (2" — g )
n=2  j=0
0o n—2 n—2—j

=ch a(z — a) 22”2]'“’“
n=2 J

=0
00 -2 n—2— ' '
= (z—a)) ¢, Z z"’27]7’“a7+k. (12.78)

n=2 7=0 k=0

S
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R—
Let the radius of convergence of our power series be R, and let ¢ = |a\.
Then
z—al<e = |z|—la|<|z—a|<e
R—la] R+]|d|
= |z| <l|a|+e=a|+ = :
2 2
R
Let S = + lal < R. Then |a| < S, and
z—al<e = |z|< S
n—2 n—2-j n—2 n—2—j
N Z Z Zn—2—j—kaj+k < Z Z |Z|n_2_j_k|a‘j+k
j=0 k=0 j=0 k=0
n— n—2—j TL—2
< §P?=8"2%"(n—1-j)
j=0 k=0 j=0
n—2 n—1
S Sn—Qansn—QZn
=0 J=0
— Sn72 . M S Sn72 . n(n — 1)

(Here I've used the fact that n — 1 —j < n for 0 < j <n—2.) Thus

n—2 n—2—j 00

o0
z—al<e = Dl > D TP HEGIH <N e, [S"n(n - 1).
n=2 =0 k=0 n=2

We noticed in the corollary to lemma 12.75 that the series > {n(n — 1)c,2" *}

has radius of convergence R, and hence » {|c,|S"*n(n — 1) },>2 converges to
a limit M, and by (12.78),

|Dof(2) — Dof(a)| < |z — al - M whenever |z —a| < e.
If {w,} is a sequence in dom(D, f) such that {w,} — a, then
|Dof(wn) = Daf(a)| < |wy —al - M

for all large n, and by the null-times bounded theorem and comparison theorem
for null sequences, {D, f(w,)} — D, f(a). Hence, D, f is continuous at a. ||
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12.9 Some XVIII-th Century Calculations

The following proofs that

DI L
LT T Tt p T
and
y ! NIV S Y s
- @ @ == J— N N cC = —
2 2n+1) 2R P 8

use XVIII-th century standards or rigor. You should decide what parts are

justified. I denote f’(6) by % below. By the geometric series formula,

RS

n=0

1—2

If 2 =re? where r > 0, # € R, then

i pngind _ 1 1—re ™
= 1 —ref 1 —reif
SO
°° 1—re ¥ (1 —rcosf) +irsinf
n 0 - N2 0 — _ _ —
;) (r" cos(nf) + ir" sin(nd)) T (e + ) 112 S ——

By equating the real and imaginary parts, we get

1—rcosf rsin 6

+ 72— 2rcosf’

o0
Z r"cosnf =
1

n=0

o0
Zr"sinn&z
147

2_ :
o 2rcosf

For r =1, this yields

icosn@— 71 — cosf —1
- 2—92cosf 2

n=0
> 1

Thus, 1+ Z cosnf = —, so
n=1 2

o0

1
Z cosnf = ——.
n=1 2
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Hence,

d (& sinnb d 1
@(Z—n >—@(—59)-

n=1

Since two antiderivatives of a function differ by a constant

> sin nfd 1
=——04+C
ngl n 2 +

for some constant C'. When 6 = 7w, we get

> sinnw 1

1
soC’:§7r and thus
> sinnb 1
= —(m—0). 12.
,; - 2(7r 6) (12.79)

For 6 = g, this gives us

1 1 N 1 1 n 1 & 1 ( 7T>

- — = - — = — c=—\(\1T——| =
1 3 5 7 9 2

(which is the Gregory-Leibniz-Madhava formula). We can rewrite (12.79) as

d & cosnf d [ (m—0)
dd = n2  df 4 )

Again, since two antiderivatives of a function differ by a constant, there is a
constant C; such that

 cosnf  (m—6)°

+Ch.

For 6 = 0, this says

and for # = 7, this says
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Subtract the second equation from the first to get

i 1— (=" _=*
n=1 n2 B 4 7
i.e.,
2 2 2 2
24 S+ =+ = = —
+y+5,+ﬁ+&c 1
and thus )
1 1 1 T
I+ttt de=o (12.80)

1 1 1 1
Let S=1+ 2 + e + = + w2 + &c. Subtract (12.80) from this to get

72 1 1 1 1 1 1
S—— = —4+— 4+ —+4+&c= &
8 T e te TS i T e T T
S PP o
-1 92 T2 T T

3 2 §
Hence, —S = W—, and then § = . I
4 8 6

An argument similar to the following was given by Jacob Bernoulli in 1689

[31, p 443]. Let

1 1 1 1
N=1+-4+=-4+-4+= )
ty Tyttt te
Then L0101 1 1
N—-1l=—-—4+—-4+-+4+—-+—-+&c.
sttt tgtie

Subtract the second series from the first to get

R N NNt

R S I I
T 12723734 5"

Therefore,

1:.+.+.+.+&c.

12.81 Exercise.
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a) Explain why Bernoulli’s argument is not valid.

b) Give a valid argument proving that
> 1
) P
n=1 TL(TL + 1)

12.82 Note. The notation m was introduced by William Jones in 1706 to
represent the ratio of the circumference to the diameter of a circle[15, vol2,
p9]. Both Maple and Mathematica designate 7 by Pi .

The notation e was introduced by Euler in 1727 or 1728 to denote the base
of natural logarithms[15, vol 2, p 13]. In Mathematica e is denoted by E . In
the current version of Maple there is no special name for e; it is denoted by
exp(1) .



