Chapter 11

Infinite Series

11.1 Infinite Series

11.1 Definition (Series operator.) If f is a complex sequence, we define
a new sequence Y f by

n

O_NHn)=> f@H) foralln e N

=0
or

Y Af(n)} = {Zf )} for all n € N,

We use variations, such as

Z{f( }n>1 {Z f }n>1

> is actually a function that maps complex sequences to complex sequences.
We call Y f the series corresponding to f.

11.2 Remark. If f, g are complex sequences and ¢ € C, then

YU+9=X+D9

and

Yo(ef)=c3 ),

202
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since for all n € N,

(S +0) ) = Y(F+00) =Y £6)+90)

- z 16) + z a() = (X Hn) + (X 9)(n)

and

(Seh) ) = ShH0) =X e fG) =X F0)

= ¢ (XZHm) = (- X Nn).

11.3 Examples. If {r"} is a geometric sequence, then >{r"} = {3}_;r7}

th( l)n
o )
then Y- {c,(t)} = {C,(t)} is the sequence for cos(t) that we studied in the last
chapter.

is a sequence we have been calling a geometric series. If {c,(¢)} =

11.4 Definition (Summable sequence.) A complex sequence {a,} is
summable if and only if the series Y {a,} is convergent If {a,} is summable,

we denote lim(3"{a,}) by Z a,. We call Z a, the sum of the series Y- {a,}.

n=0 n=0

11.5 Example. Ifr € C and |r| < 1, then Z r" = hm{z ri} =
n=0

11.6 Example (Harmonic series.) The series

o) {55

is called the harmonic series, and is denoted by {H,},>1. Thus



204 CHAPTER 11. INFINITE SERIES

1
We will show that {H,},>; diverges; i.e., the sequence {—} is not
- nJ)n>1

summable. For all n > 1, we have

1 1 1 1 1 1
e T B S R S g
. <1+1 +1+1 1+ +1+ N 1 +1
= \2 2 2 4 46 6 o2n  2n
= 1+2+2+2+ +2
2 2 4 6 on
= 1+(1+1+ +1>
2 2 n
1
= - +H,.
5+

1
From the relation H,, > 3 + H,, we have

1 1
H, > —+H, =-+1
2 2 2+ 1 2+
H, > 1+H >2+1
4 = 2 2_2
1
Hy > —-+H;,>-+1
§ = 2+ 4_2+
and (by induction),
Hyn g+1f0ralln€Z>1

1
Hence, {H,},>1 is not bounded, and thus {H,} diverges; i.e., {—} is not
- nJ)n>1

summable.

11.7 Theorem (Sum theorem for series.) Let f, g be summable sequences
and let c € C. Then f+ g and cf are summable, and

f:ofw - if(nHig(n)
iocf(n) - cijjoﬂm

If f is not summable, and c # 0, then cf is not summable.
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Proof: The proof is left to you.

11.8 Exercise. Let f,g be summable sequences. Show that f + ¢ is
summable and that

o0

i)f+g Z +gg

11.9 Example. The product of two summable sequences is not necessarily
summable. If

o \F\F \Ff \F
- ) ) 27 2: 37 37 47 47
n>1
1 1 1
Zf:{:l’()i\/;?(]?\/;aoa\/;aoa"'}
n>1

This is a null sequence, so f is summable and Y f(n) = 0. However,
n=1

Pl )
) ’2,2’373)4,4’ n21’

o (Z(fQ)) (2n) = Qi% = 2H,. Thus 3 (f?) is unbounded and hence f? is
=1

then

not summapble.

11.10 Theorem. Ewvery summable sequence is a null sequence. [The con-
verse is not true. The harmonic series provides a counterexample.]

Proof: Let f be a summable sequence. Then {Z f(4)} converges to a limit

7=0
n+1
L, and by the translation theorem {>_ f(j)} — L also. Hence
7=0

n+1

{Zf )} - {Zf )} = L—-L=0;

(f(n+1)} =0

and it follows that f is a null sequence. ||
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11.2 Convergence Tests

In this section we prove a number of theorems about convergence of series of
real numbers. Later we will show how to use these results to study convergence
of complex sequences.

11.11 Theorem (Comparison test for series.) Let f, g be two sequences
of non-negative numbers. Suppose that there is a number N € N such that

f(n) < g(n) for alln € Zsy.

Then
if g is summable, then f is summable,

and
if [ is not summable, then g is not summable.

Proof: Note that the two statements in the conclusion are equivalent, so it is
sufficient to prove the first.

Suppose that g is summable. Then " g converges, so Y g is bounded —
say (X g)(n) < B for all n € N. Then for all n > N +1,

n

Y FG)

S 1)+ )
> 1)+ 3 00) € 3 £G) + B

YofG) =

IA

;)f(j) + > 90

j=N+1

<

J=0
Since for n < N we have

n N

G <X FG) S X0+ B,

N

we see that 3 f is bounded by > f(j)+ B. Also Y f is increasing, since
=0

(S Hn+1) = (S F)n) + f(n+1) > 5 f(n). Hence 3" f is bounded and

increasing, and hence ) f converges; i.e., f is summable. ||
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11.12 Examples. Since

1 1
%25>0f0r311n6221
1 1
and ) {ﬁ} . diverges, it follows that »_ {%} also diverges. Since
n> n>1

t'n
> {t"™} converges for 0 <t < 1, — ¢ also converges for 0 <t < 1.
g ol

In order to use the comparison test, we need to have some standard series
to compare other series with. The next theorem will provide a large family of
standard series.

1
11.13 Theorem. Letp € Q. Then {ﬁ} 1s summable if p > 1, and s
n>1
not summable if p < 1.

1
Proof: Let fy(n) = = for n € Z>y. Then for all n € Z5, and all p > 0,

(pr)(n) < (pr)(Qn—{—l)

11111 1 1
BT TR TR TR R CTA TR Ry
S (A A S I
= w» w4 (2n)r " (2n)
= 1+2<1+1+ - )

2 4qp (2n)p
= 1+3(1+1+ +i)

2w \17 " ne
= 14270 fi)(

Hence,
(1-2"7) (X)) <
If p> 1, then 1 —p < 0, so 2! < 1 and 1 — 2'7P? is positive. Hence
O fp)(n) < ﬁ; i.e., the sequence Y f, is bounded. It is also increasing,
so it converges.
If p < 1, then 1 > l, so by using the comparison test with the harmonic

series, f, is not summable. ||
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11.14 Remark. For p > 1, the proof of the previous theorem shows that

Hence, we get

* 1 1
Sle Lo
—n? 1-2"1
and o 1 . o
— < = —=1.1428 ---.
nz::ln4_1—2_3 7

[e’s} 1 2
2—2:—:1.6449---
n:ln
and
o0 1 4
> 5 =o-=10823---.
n:ln
11.15 E 1 1 i ble, si
. xamples. {m}zl 1s summable, since
1 1
0<7<—2forallnezzl

“n24nl2 T n

and {i} is summable.

n2

is not summable since

{1 +nl/? }n21

1 > ! _ ! —1 for all Z
T+ nil2 = pifz gz g gz OF AN E A

1
and {—} is not summable.
ni/2 1

3 4 1
11.16 Example. Letw = —+ —i,andlet z € D(0,1). Then { ———

5 5 n?lz —w"| ),
is summable. -
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Proof: By the reverse triangle inequality, we have for all n € Z>;
|z —w"| > |w"| = |z| =1—2] >0

SO
1 1
< < f Ilné€Zs.
w2z —wr| = 21—z T

1
Since {c —2} is a summable sequence for all ¢ € C, it follows from the
n >1

comparison test that { is summable. ||

1
n?|z — w"| 1

(99. 99)

11.17 Example. Let f(n) = for all n € N. Then

(99.99)+1  (99.99) - (99.99)"  99.99

f+ D=0 = . —arr S
If n > 100, then n + 1 > 101, so
fl 1) = 2 ) < 2P f )
Hence,
faon < (352) £aoo)
sa02) < (29 o) < (22 00
sa0g) < (%9 102 < (22 00

Hence, (by induction)

f(100+n) <

()100)
- (or)

n+100 100
(o) 700)

101
(99 99) 100+n
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101
99.99

99.99

100 J
where C' = ( ) f(100); ie., f(j) <C (W) for all j > 100. Since

99.99

J
W) converges, it follows from the comparison

n
the geometric series Z (
=0

" (99.99)7
test that Z( . ) converges also.
j=0 J
11.18 Exercise. Determine whether or not the sequences below are
summable:
(a) {(=1)"}

et
0 ()
O\
@ i)

11.19 Exercise. Give examples of the following, or explain why no such
examples exist.

a) Two real sequences f and g such that f and g are not summable, but
f + ¢ is summable.

b) Two real sequences f and g such that f and g are summable, but f + ¢
is not summable.
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¢) Two real sequences f and g such that f(n) < g(n) for alln € N, and ¢
is summable but f is not summable.

11.20 Theorem (Limit comparison test.) Let f,g be sequences of pos-

itive numbers. Suppose that = converges to a non-zero limit L. Then f is

summable if and only if g is summable.

Proof: We know that L > 0. Let N = N; _; be a precision function for i — L.
9 g
Then

ERR
-2

forallm > N (g),

ie.,

L _f(n) 3L
2

S—S—foralanN(é).
2 2

3L 3L
If g is summable, then 59 is summable, and since f(n) < 7g(n) for all
L
n>N (5), it follows from the comparison test that f is summable. If g is

2
not summable, then since g(n) < 2f(n) for all n > N(%) it follows that ff

is not summable, and hence f is not summable. ||

n?>+5n+1
6n3+3n—2

n?>+5n+1

11.21 Example. [s{———
6n3 + 3n — 2

} summable? Let a,, =
n>1

- 2
1
Note that a,, > 0 for all n € Z~,. For large n, a, is “like” o —,s0I'll
= 6n3  6n

1 1
compare this series with {—} . Let b, = — for all n € Z>;. Then
nJnp>1 n -

an _n+in?+n 14245

by  6m3+3n—-2 6+ 35— 2’

n

tn 1+2+ % 1+04+0 1
{—} =\rL3 _ 2 — o g -a70
boJost \6+5-3%) ., "6+0+0 6

SO

n?>+5n+1
6n3 4+ 3n — 2

1
Since {bp}n>1 = {—} is not summable, {
- nJn>1

summable.

} is also not
n>1
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11.22 Exercise. Determine whether or not the sequences below are
summable.

) n?4+3n+2
a R .
nt+n+1 n>1

p {1
nd+n+1)
11.23 Theorem (Ratio test.) Let {a,} be a sequence of positive numbers.

Suppose the {a"+1} converges, and lim{a"H} = R. Then, if R < 1, {a,} is
an (’I”I'L
summable. If R > 1, {a,} is not summable. (If R =1, the theorem makes no

assertion.)

Proof: Suppose {an+1} — R.
a

n

Case 1: R < 1. Let N be a precision function for {anﬂ — R}. Then for all

Qn
n € N,
2 an 2
n 1-R R+1
— Dt Ry _hrl
an, 2 2
1— 1
WriteMzN(TR> and S = _;R,SO(0<S<1). Then

n>M = a,11 <S5 -ay,

SO
anr S SOGM
ap+1 < Say
amiz < S-anyr < Say
aris < S-ane < SPan,

and (by an induction argument which I omit)

av+k < Skay for all k € N,
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or
AN +k S SM+k(CLMS_M) for all k € N,

or
an < S™(apS M) for all n € Zs .

Since {S™} is a summable geometric series, it follows from the comparison
test that {a,} is also summable.

Case 2: (R > 1). As before, let N be a precision function for {GZH - R}.
Then for all n € N, "

- 1
nz]\f(ﬂ) a”+1_R‘<R_
2 Qap 2
R—1 R+1
— a”+1>R—< )z LR
an 2 2
- Ap+1 > Q-
Hence {a,} is not a null sequence. So {a,} is not summable. ||
11.24 Warning. The ratio test does not say that if Int1 < 1 for all n,
a
. 1 Ap+1 " n
then {a,} is summable. If a,, = — for n € Z>, then = < 1 for all
n = an n+1

Ap+1
an

n but {a,} is not summable. (In this case, lim{ } = 1, and the ratio test

does not apply.)
1 bn—|—1 ’I'L2
If b, = 3 for all n € Z>, then = CESIE for all n and hence

bn
b
lim{ ZH} =1, and {b,} is summable. These examples show that when
lim { an+1} =1 the ratio test gives no useful information.
a'n
11.25 Remark. If, in applying the ratio test, you find that Gnt1 > 1 for

ip e a
all large n, you can conclude that Y {a,} diverges (even if hm{ n+1} does
Qp
not exist), since this condition shows that {a,} is not a null sequence.
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11.26 Example. Let ¢t be a positive number and let a, = % We

apply the ratio test to the series > {a,}. .
1 (3(n+ 1)) (n!)?
n [(n+1)1FBr)ltn

Note that

Bn+1) = Bn+3)!'=Bn+3)Bn+2)!=Bn+3)(3n+2)(3n+1)!

(3n+3)(3n +2)(3n + 1)(3n).

Hence

Unst (3n)!t- (3n +3)(3n+2)(3n + 1) ( n! )3
an, (3n)! (n+1)!

_ t(3n+3> <3n+2> <3n—1—1>
N n+1 n+1 n+1
3+2) (3+2
1+1)\1+1
From this we see that { n+1} — 27t. The ratio test says that if 27¢ < 1 (i.e.,

(3n)'t"
(n!)3

ift < 2—17), then { then the sequence is not

summable.

} is summable, and if ¢ > 27,

1 1
Can we figure out what happens in the case ¢t = 2—7? For t = 77 our

formula above gives us

an+1:(1+%)(1+%):1+%+9%2>(1"‘;): n
o (1+3) (1+5) (1+%)2 (1+%)2 n+1
ie., appq > nL—i-la" for n > 1. Thus,
1
ay > 5 @
as > ga >g-1a:1a
3 2 3%.223 1 1
ay > 2%2%'101:1&1
as > éa >é1 _1
5 = 54_5 a1 = —aq
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and (by induction),
ap > lal for n > 1.
n
Since {%} is not summable, it follows that {a,} is not summable for
) n>1
= 5=

] 24n
11.27 Example. Let b, = (7(121’})' for all n € N. I'll apply ratio test to
>{b,}. For alln € N,

byt (n+ 1)1247+1  (2n)!
by (2n+2)!  (n!)24n

(n+1)2-4  2m+2 1+1

= = 1

2n+1)(2n+2) 2n+1 1+

bn : . 2n+2
Hence b+1 } — 1 and the ratio test does not apply. But since n i 1 > 1 for
) n

all n, I conclude that {b, } is an increasing sequence and hence Y {b, } diverges.

11.28 Exercise. For each of the series below, determine for which z € [0, oo)
the series converges.

22 {7}

nl

) %
0= {5 )

AEDN

e) X{na" tn>1
f) >{nlz"}

N2.,.n
g) Z { (T(L; ; } [For this series, there is one x € [0, 00) for which you don’t
n)!

need to answer the question.]




216 CHAPTER 11. INFINITE SERIES

11.3 Alternating Series

11.29 Definition (Alternating series.) Series of the form > {(-1)"a,}
or Y {(=1)"*'a,} where a; > 0 for all j are called alternating series.

11.30 Theorem (Alternating series test.) Let f be a decreasing sequence
of positive numbers such that {f(n)} — 0. Then {(—=1)"f(n)} is summable.
Moreover,

T_nzo (—1)7 () < i(—l)ﬁf(j) < Zn%(—l)jf(j)
and . o
> (-1776) = X -1YF0) < Fn+

for all m,n € N.

Proof: Let S, = Y (—=1)/f(j). For alln € N,

j=0
So(n+1) = Sont2 = San — f(2n+ 1) + f(2n +2) < 5oy

and
Son+1)+1 = Sant1 + f(2n+2) — f(2n + 3) > Sont1.

Thus {Ss,} is decreasing and {Ss,1} is increasing. Also, for all n € N,
St < Sony1 = Son — f(2n+1) < Sop

so {Ss,} is bounded below by S;, and
Sont1 = San — f(2n+1) < 52 < Sp

so {San+1} is bounded above by Sj.
It follows that there exist real numbers L and M such that

{Son} — L and Sy, > L for allm € N
{SQVH—I} — M and Sgn_|_1 < M for all n € N.

Now

L-M = ]1m{5'2n} — lim{52n+1} = llm{SQn - SQn—H}
= lim{f(2n+1)} =0,
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so L =M.
It follows from the next lemma that {S,} — L; i.e.,

M=L=1m§5, = i(—l)"f(n)

n=0
Since for all n € N
Sont+1 < L < Sy,
we have
|L — Son| < Sop, — Sont1 = f(2n+1)

and since

Sont1 <L < Songo
|L = Sont1| < Sopto — Sons1 = f(2n +2).

n

Thus, in all cases, |L — S,| < f(n + 1); ie, Y (—1)f(j) approximates

=0
> (~1)? f(5) with an error of no more than f(n+1). ||
=0

11.31 Lemma. Let {a,} be a real sequence and let L € R. Suppose
{agn} — L and {azns1} — L. Then {a,} — L.

Proof: Let N be a precision function for {as, — L} and let M be a precision
function for {ag,41 — L}. For all ¢ € R*, define

N, j(e) =max(2N(g),2M(e) +1).

I claim N,_; is a precision function for a — I~/, and hence ¢ — L. Let n € N.
Case 1: n is even. Suppose n is even. Say n = 2k where k£ € N. Then
(n>N, j(e) = 2k>N, ;(e) > 2N(e)
= k>N() = Jagp— L| <e¢
= |a, — L| <e,

Case 2: n is odd. Suppose n is odd. Say n = 2k + 1 where k£ € N. Then
(mn>N, jle) = 2k+1>N, j(e) >2M(e)+1
- ]{JEM(E):|02]€+1—L|<6
= |a, — L| <e.
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Hence, in all cases,
n>N, jle) = |la,—L| <e.||
11.32 Remark. The alternating series test has obvious generalizations for
series such as _ _
DAY} or Y A(=1)F(5)} iz,
and we will use these generalizations.

11.33 Example. If 0 <t <1, then

(@) ™ (@)

are decreasing positive null sequences, so

__1\n42n _ 1\n4+2n+1
(yreny (1)
(2n)! (2n + 1)!
are summable; i.e.,

- (1) n (—1)i
{Z W} and {Z W} converge.

J=0 J=0

(These are the sequences we called {C,,(t)} and {S,(¢)} in example 10.45.)

= (1) (%) 1
Also, Z AL CLY/ S [ , with an error smaller than
i (29)! 200 240000
1
750000000" My calculator says
cos(.1) = 0.995004165
and
1 1
— — 4+ ———— =0.995004166.
200 240000

n
11.34 Entertainment. Since {—} is a decreasing positive null se-
n>1

n
(_1)n—1tn

quence for 0 < t < 1, it follows that Z{
n

} converges for
n>1



11.3. ALTERNATING SERIES 219

0 <t < 1. We will now explicitly calculate the limit of this series using a
few ideas that are not justified by results proved in this course. We know that
for all z € R\ {—1}, and all n € N,

1—(=2)" 1
l—z+2° =2+ 4 ()" ' = (=2)

= —|— (_1)ﬂ+1i.
1—(-z) 14z 1+

Hence, for all ¢ > —1,

n

t t 1 t o
1— 2 _ ’n—ld — d -1 n+1/ o .
/o z+x° 4+ (—x) z A g z + (1) Ay x;
ie.,
2 3 1 n—lmnt t t pn
O O AT G \ =1n(1+x)\ +(—1)”+1/ dzx
n 0 0 0o 1+
Thus
t2 t3 (_1)n—1tn t pn
t——+—+- o+ =In(l1+¢ —1”+1/—d.
2+3+ + n n(l+1t)+(=1) 01+xx
Hence
t2 t3 (_1)n—1tn t gn
t——+ —+--- 7—11t:/ d‘
‘ 2 * 3 et n n(l+1) 0o 14z v
for all t > —1. -
If we can show that { / 12_ dx} is a null sequence, it follows that
0 z
t2 t3 (_1)n—1tn
t——+—+---+——— 3 > In(l+¢
{ 5 + 3 + + - n(l+1),
or in other words,
) (_1)j+1tj
In(1+1¢) = Z -t (11.35)
=1 J

t n

I claim {/ 13:_ dac} is a null sequence for —1 < ¢ < 1 and hence (11.35)
0 T

holds for —1 < ¢t < 1. In particular,
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1
First suppose t > 0, then 7 " <z"for0 <z <t s0
x

n+1 |t

0 n+1

t 1 t
0= - 2"dx g/ z"dr =
0o 1+=x 0

T tn-i—l

n+1

tn—i—l
Since { n 1} is a null sequence for 0 < ¢ < 1, it follows from the compar-
n

n

t o
ison test that {/
o 1

n dm} is a null sequence for 0 < ¢t < 1. Now suppose
x
—1 <t < 0. Then

1
< fort <x <0,
142 1+t
SO =] < i and
14+2 ~ 1+t
t n 0 n 0 n
il da:‘ = / =1 da:ﬁ/ 2] dx
0o 1+=x t 14+ t 14+t
1 0 1 [t]
= —/ |z|"dz = —/ z"dx
1+t /i 1+tJo
. 1 |ttt
14t n+l
I T t gn
If -1 <t<0, then { —— - is a null sequence, so {/ dm} is a
1+t n+1 o 1+x
null sequence. ||
11.36 Entertainment. By starting with the formula
1— (_3,/.2)71
2 4 6 2\n—1 _
for all z € R and using the ideas from the last example, show that
0 (—1)ig2+1
~—————— = arctan(z) for all z € [-1,1]. (11.37)

i (29+1)

Conclude that
1 1 n 1 1 n
5 7 9 11
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11.38 Exercise. Determine whether or not the following series converge.

2) Z{ n+1}n21
b) Z{(—l)”"“}@

n

nth
c) Z{ } (assume here —1 <t <1).

11.4 Absolute Convergence

11.39 Definition (Absolute Convergence.) Let f be a complex sequence.
We say that f is absolutely summable if and only if |f| is summable; i.e., if

and only if {Z |f(5)|} converges. In this case, we also say that the series 3 f
7=0
is absolutely convergent.

—1)"
11.40 Example. Z{( ) } is convergent, but is not absolutely
n n>1

convergent.

11.41 Theorem. Let f be a complex sequence. If > f is absolutely conver-
gent, then Y. f is convergent.

Proof:

Case 1: Suppose f(n) is real for all n € N, and that Y |f| converges. Then

0< f(n)+[f(n) < |f(n)] +|f(n)] = 2[f(n)|

for all n € N, so by the comparison test, >(f + |f|) converges. Then
Y(f 4+ [f]) = X | f|, being the difference of two convergent sequences, is
convergent; i.e., > f converges.

Case 2: Suppose f is an arbitrary absolutely convergent complex series. We
know that for all n € N,

0 < [Re(f)(n)| < |f(n)|
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and

0 < [Mm(f)(n)] < [f(n)],
so by the comparison test, >- |Re(f)| and 3 |Im(f)| are convergent, and
by Case 1, > (Re(f)) and > (Im(f)) are convergent. It follows that
S (Re(f)) +iX(Im(f)) = 3 f is convergent. ||

11.42 Example. Let z be a non-zero complex number. Let
noZ¥(—1)7
Z)} = {cn(z)} = e (-
2 JZ:% (25)!
I claim > >{c,} is absolutely convergent (and hence convergent). We have

|Z|2n

)] = Gy

We have

2n+2 2 | 2
ent1(2)] _ 2] (2n) — 2] S 0<1
len(2)] (2n + 2)! |z|?" (2n+1)(2n + 2)
so by the ratio test, >-{|c.(2)|} converges. Hence > {c,(z)} is absolutely con-
vergent, and hence it is convergent. Clearly {C,(0)} — 1, so {C,(z)} con-

)4 p20H1
L} <

(27 +1)!

verges for all z € C. In the exercises you will show that Z

also convergent for all z € C.
Motivated by the results of section 10.3, we make the following definitions:

11.43 Definition (sin and cos.) For all z € C, we define

Ry
cos(z) = jgo 2))
) B st )] ~2j+1
sin(z) = jz:% G

11.44 Remark. It is clear from the definition that
sin(0) = 0 and cos(0) = 1.
sin(—z) = —sin(z) for all z € C.
cos(—z) = cos(z) for all z € C.
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Forallm € N, z € C, let
( 1)j22j
7=0 (2]) ’

n 1)JZ2]+1
Sn(z) =

N
O

|
M s

Then

s = 30
= zn: —C’n(z).

I would now like to be able to say that for all z € C,

{Su(2)} = S(z) = {Si(2)} = S'(2)
= {Cn(2)} = S'(2)
= S'(z) = C(2) (since {C,} = O);

i.e., I would like to have a theorem that says

{fn(2)} = f(2) = {2(2)} = ['(2)-

However, the next example shows that this hoped for theorem is not true.

11.45 Example. Let f,(2) = 1 +an2 for all z € C, n € Z>,. Then for all

z € C\{0},

z 1 1

{/n(2)} = EW 05720

and

{£2(0)} = {0} =0,
SO i

fu(2) = 0(2) for all z € C.
1 2\ _ 92 2 1— 2

Now f,(2) = (1t nz) —2nz = So f/(0) =1 for all n, and thus

(1 +n2?)? (1+ an)
{f1(0)} = 1 # 0'(0). Eventually we will show that sin’ = cos and cos’ = — sin,
but it will require some work.
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11.46 Warning. Defining sine and cosine in terms of infinite series can
be dangerous to the well being of the definer. In 1933 Edmund Landau was
forced to resign from his position at the University of Gottingen as a result of
a Nazi-organized boycott of his lectures. Among other things, it was claimed
that Landau’s definitions of sine and cosine in terms of power series was “un-
German”, and that the definitions lacked “sense and meaning”[33, pp 226—-227].

(_1)nz2n+1

11.47 Exercise. Show that »_ {m

} converges for all z € C.

11.48 Exercise.

"
§_|__Z

a) Does the series » {(5725

)TL
converge?
n
n>1

in 5

?
b) Does the sequence { ) —,} converge?
>1

j=1
11.49 Exercise.

a) For what complex numbers z does Y- {nz"} converge?

b) For what complex numbers z does {2} converge?

11.50 Note.  The harmonic series was shown to be unbounded by Nicole
Oresme c¢. 1360 [31, p437]. However, many 17th and 18th century mathe-
maticians believed that (in our terminology) every null sequence is summable.
Jacob Bernoulli rediscovered Oresme’s result in 1687, and reported that it con-
tradicted his earlier belief that an infinite series whose last term vanishes must
be finite[31, p 437]. As late as 1770, Lagrange said that a series represents a
number if its nth term approaches 0 [31, p 464].

The ratio test was stated by Jean D’Alembert in 1768, and by Edward
Waring in 1776[31, p 465]. D’Alembert knew that the ratio test guaranteed
absolute convergence.

The alternating series test appears in a letter from Leibniz to Jacob Bernoulli
written in 1713[31, p461].
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The series (11.35) for In(1 + t) is called Mercator’s formula after Nicolaus
Mercator who published it in 1668. It was discovered earlier by Newton in
1664 when he was an undergraduate at Cambridge. After Newton read Mer-
cator’s book, he quickly wrote down some of his own ideas (which were much
more general than Mercator’s) and allowed his notes to be circulated, but not
published. Newton used the logarithm formula to calculate In(1.1) to 68 deci-
mals (of which the 28th and 43rd were wrong), but a few years later, he redid
the calculation and corrected the errors.

See [22, chapter 2] for a discussion of Newton’s work on series.

The series representation for arctan (11.37) is called Gregory’s formula after
John Gregory (1638-1675) or Leibniz’s formula after Gottfried Leibniz (1646-
1716). However, it was known to sixteenth century Indian mathematicians
who credited it to Madhava (c. 1340-1425). The Indian version was

B sinf 1sin®# 1sin®6
~ cosf 3cos®f  Hceos®h

(See[30, p292].)



