Chapter 10

The Derivative

10.1 Derivatives of Complex Functions

You are familiar with derivatives of functions from R to R, and with the
motivation of the definition of derivative as the slope of the tangent to a
curve. For complex functions, the geometrical motivation is missing, but the
definition is formally the same as the definition for derivatives of real functions.

10.1 Definition (Derivative.) Let f be a complex valued function with
dom(f) C C, let a be a point such that a € dom(f), and a is a limit point of
dom(f). We say f is differentiable at a if the limit

()~ f(a)
zZ—a zZ—aQ
exists. In this case, we denote this limit by f’(a) and call f'(a) the derivative

of f at a.

By the definition of limit, we can say that f is differentiable at a if
a € dom(f), and a is a limit point of dom(f) and there exists a function
D, f :dom(f) — C such that D,f is continuous at a, and such that

f(z) = f(a)

D.f(z) = P for all z € dom(f)\{a}, (10.2)

and in this case f'(a) is equal to D, f(a).

182
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It is sometimes useful to rephrase condition (10.2) as follows: f is differen-
tiable at a if a € dom(f), a is a limit point of dom(f), and there is a function
D, f:domf — C such that D, f is continuous at a, and

f(z) = f(a) + (z — a) D, f(2) for all z € dom(f). (10.3)
In this case, f'(a) = D,f(a)-

10.4 Remark. It follows immediately from (10.3) that if f is differentiable
at a, then f is continuous at a.

10.5 Example. Let f: C — C be given by
fiz e 22
and let @ € C. Then for all z # a,
f(z) = fla) _2*—a’

= = 2+ a.
zZ—a zZ—a

If we define D, f: C — C by

D,f(z) =z+aforall z € C,
then D, f is continuous at a, so f is differentiable at ¢ and
f'(a) =D,f(a) =a+a=2aforallacC.

We could also write this calculation as

_ 2 2
limM:]imu:limz—i—a:a—}-a:Qa.
zZ2—ra zZ—aQ zZ—a A ) zZ—ra

Hence f is differentiable at ¢ and f'(a) = 2a for all a € C.

1

10.6 Example. Let v(z) = — for z € C\{0} and let « € C\{0}. Then for
z

all z € C\{a}

v(z) —v(a) +-1 a—z 1

z—a z—a za(z—a) za
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Let D,v: C\{0} — C be defined by
1
Dyv(z) = P for all z € C\{0}.

Then D,v is continuous at a, so v is differentiable at a, and

1

v'(a) = Dyv(a) = ~

for all a € C\{0}.

10.7 Warning. The function D, f should not be confused with f’. In the
example above

1 —1
D, =—— "(z) = —.
WD) =-—, V()=
Also it is not good form to say
Dof(z) = 12 =719 (Zi — (J; @) (10.8)

without specifying the condition “for z # a,” since someone reading (10.8)
would assume D, f is undefined at a.

10.9 Example. Let f(z) = z* for all z € C, and let a € C. Let

D.f(z) = f(z) = f(a) _roa for all z € C\ {a}.

z—a z—a
I claim that D, f does not have a limit at a, and hence f is a nowhere differ-

entiable function.
Let

{antnz = {a+ %}

Then {a,}n>1 and {b,},>1 are sequences in dom(f)\{a} both of which con-
verge to a. For all n € Z>q,

n n

a{bn}nZI = {a-l—i} .
>1 n>1

G
Daflen) = i =1=h
a+i) —q =i
Daf(bn) = —(a+n2_a :%:—17
n n

50 {Dyf(an)}n>1 = 1 and {Dqf(bn)}n>1 — —1, and hence D, f does not have
a limit at a.
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10.10 Exercise. Investigate the following functions for differentiability
at an arbitrary point a € C. Calculate the derivatives of any differentiable
functions.

a) f(z)=Az+B A, B are given complex numbers.
1

(z + )2

c) h(z) = Re(z), i.e. h(z + iy) = x.

b) g(z) = z € C\{—1}.

10.11 Theorem (Sum theorem for differentiable functions.) Let f, g
be complex functions, and suppose f and g are differentiable at a € C. Suppose
a is a limit point of dom(f) N dom(g). Then f + g is differentiable at a and

(f +9)'(a) = f'(a) + ¢'(a).

Proof: Since f, g are differentiable at a, there are functions D, f: dom(f) — C,
D,g:dom(g) — g such that D,f, D,g are continuous at a, and

f(z) = f(a)+ (z—a)D.f(2) for all z € dom(f)
g(z) = g(a)+ (z — a)D,g(z) for all z € dom(g).
It follows that

(f+9)(2)=(f+9)(a) + (z — a)[Dof(2) + Dag(z)] for all z € dom(f + g)

and D,f + D,g is continuous at a.
We can let D,(f + g) = D,f + D,g and we see f + g is differentiable at a
and

(f +9)(a) = (Daf + Dag)(a) = Daf(a) + Dag(a) = f'(a) + ¢'(a). |

10.12 Theorem. Let f be a complex function and let ¢ € C. If f s differ-
entiable at a, then cf is differentiable at a and (cf)'(a) = c- f'(a).

Proof: The proof is left to you. ||

10.13 Theorem (Chain Rule.) Let f,g be compler functions, and let
a € C. Suppose f is differentiable at a, and g is differentiable at f(a), and that
a is a limit point of dom(go f). Then the composition (go f) is differentiable
at a, and

(go f)(a) =4 (f(a))- f(a).
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Proof: From our hypotheses, there exist functions
D, f:dom(f) = C, Dy(ayg: dom(g) — C
such that D, f is continuous at a, Dy(,g is continuous at f(a) and

f(z) = fla)+ (z—=a)D,f(z) for all z € dom(f) (10.14)
9(z) = g(f(a))+ (2= f(a)) Dwayg(z) for all z € dom(g). (10.15)

If z € dom(go f), then f(z) € dom(g), so we can replace z in (10.15) by f(z)
to get

9(f(2)) =g (f(a)) + (f(2) = f(a)) D@9 (f(2)) for all z € dom(go f).
Using (10.14) to rewrite f(z) — f(a), we get

(g0 f)(z) = (g0 f)(a) + (2 = a)Daf(2)(Dsa)g © f)(2) for all z € dom(g o f).
Hence we have
D,(go f) = Daf - ((Df(a)g) © f)
and D,(g o f) is continuous at a. Hence g o f is differentiable at a and
(9o f)(a) = Dalgo f)(a) = Daf(a)Ds@g (f(a))
= f'(a)- g (f(a). |

10.16 Theorem (Reciprocal rule.) Let f be a complex function, and let
a € dom(f). If f is differentiable at a and f(a) # 0, then 1 is differentiable

at @ and (%)I(a) - (_fj(t ;()0;)2. f
1

Proof: If v(z) = — for all z € C\{0}, we saw above that v is differentiable and
2

1
v'(2) = ——- Let f be a complex function, and let a € C. Suppose f is
z

1
differentiable at a, and f(a) # 0. Then (vo f)(z) = 7 By the chain rule

v o f is differentiable at a, and
1
f(a)?

(vo f)(a) =2 (f(a))- f'(a) = =3 f'(a). |
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10.17 Exercise (Product rule.) Let f,g be complex functions. Sup-
pose f and g are both differentiable at a, and that a is a limit point of
dom(f) Ndom(g). Show that fg is differentiable at a, and that

(f9)'(a) = f'(a)g(a) + f(a)g'(a).

10.18 Exercise (Power rule.) Let f be a complex function, and suppose
that f is differentiable at a € C. Show that f" is differentiable at a for all
n e ZZI and

(f")(a) =n(f(a)""" f'(a).

(Use induction.)

10.19 Exercise (Power rule.) Let f be a complex function. suppose that
f is differentiable at a € C, and f(a) # 0. Show that f™ is differentiable at a
for all n € Z™, and that

(f")(a) = n(f(a)" * f'(a).

forallneZ.

10.20 Exercise (Quotient rule.) Let f, g be complex functions and let
a € C. Suppose f and g are differentiable at a and g(a) # 0, and a is a limit

point of dom <i> Show that / is differentiable at a and
g g

(f)' (@) = 20I'(@) ~ £(@)(0)

10.2 Differentiable Functions on R

10.21 Warning. By the definition of differentiablity given in Math 111,
the domain of a function was required to contain some interval (¢ —¢,a+¢) in
order for the function be differentiable at a. In definition 10.1 this condition
has been replaced by requiring a to be a limit point of the domain of the
function. Now a function whose domain is a closed interval [a,b] may be
differentiable at a and/or b.

10.22 Definition (Critical point.) Let f be a complex function, and let
a € C. If f is differentiable at a and f'(a) = 0, we call a a critical point for f.
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10.23 Theorem (Critical Point Theorem.) Let f:dom(f) — R be a
function. Suppose f has a mazimum at some point ¢ € dom(f), and that
dom(f) contains an interval (c — e, c+¢) where e € R, If f is differentiable
at ¢, then f'(c) = 0. The theorem also holds if we replace “mazimum” by
“mintmum.”

Proof: Suppose f has a maximum at c,

o) — 1 F@ = 1)

Tr—C T —C

flan)=f(c) 0 f(bg)—f(c) <0
= e 2

anp—cC

A, ¢ b,
Define two sequences {a,}, {b,} in (¢ —¢,c+¢€) by

foralln e N

a, = Cc—

(n+2)

b, = c+ for all n € N.

3
(n+2)
Clearly {a,} — c and {b,} — ¢, and f(a,) < f(c) and f(b,) < f(c) for all
n € N. We have

flan) = f(e) _ flan) = F(c)

> 0.
n =€ o (VHE-2)

By the inequality theorem,

Also,
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=)
b, —c

Since 0 < f’(¢) < 0, we conclude that f'(c) = 0. The proof for minimum

points is left to you. ||

10.24 Theorem (Rolle’s Theorem.) Let a,b € R with a < b and let
f:la,b] — R be a function that is continuous on [a,b] and differentiable on
(a,b). Suppose that f(a) = f(b). Then there is a number ¢ € (a,b) such that
f(e) =0
Proof: We know from the extreme value theorem that f has a maximum
at some point p € [a,b]. If p € (a,b), then the critical point theorem says
f'(p) = 0, and we are finished. Suppose p € {a,b}. We know there is a point
q € [a,b] such that f has a minimum at ¢q. If ¢ € (a,b) we get f'(¢) = 0 by
the critical point theorem, so suppose g € {a,b}. Then since f(a) = f(b) and
p € {a,b},q € {a,b}, we have f(p) = f(¢), and it follows that f is a constant
function on [a, b], and in this case f'(c¢) = 0 for all ¢ € (a,b). ||

10.25 Theorem (Mean Value Theorem.) Let a,b € R with a < b, and
let f be a function from [a,b] to R such that f is continuous on |a,b] and
differentiable on (a,b). Then there is a point ¢ € (a,b) such that

(b, £ (b))
y = f(z)
= L(z)

(a, f(a))
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This theorem says that the tangent to the graph of f at some point (¢, f(c))
is parallel to the chord joining (a, f(a)) to (b, f(b)).
Proof: Let

f(b) — f(a)
b—a

so the equation of the line joining (a, f(a)) to (b, f(b)) is y = L(z), and

L(z) = f(a) + (x —a) for all z € R,

L'(z) = w for all z € R.

Let
A(z) = f(z) — L(z) for all z € [a, b].

Then

Ala) = fla) = L(a) = f(a) = f(a) =
Ab) = f(b) = L(b) = f(b) — (b)=

and A is continuous on [a, b] and differentiable on (a,b). By Rolle’s theorem,
there is some ¢ € (a,b) such that A’(c) = 0; i.e., f'(c) — L'(c) = 0; i.e.,

fi(e) = () = 121

10.26 Remark. The mean value theorem does not hold for complex valued
functions. Let
F(t)=(1+it)* forall t € [-1,1].

Then
F(£1) = (1 4+4)* = (£2i)? = -4,
" P) - F(-1)
1—(=1) '
But

F'(t) = 4i(1 + it)?,
so F'(t) =0 <= t = —i, and there is no point in ¢ € (—1,1) with F'(¢) = 0.
10.27 Definition (Interior point.) Let J be an interval in R. A number

a € J is an interior point of J if and only if a is not an end point of J. The set
of all interior points of J is called the interior of J and is denoted by int(J).
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10.28 Examples. If a < b, then

int([a, b)) = int([a, b]) = int((a, b)) = (a,b),
int([a, 00)) = int((a,0)) = (a,00).

If J is an interval, and s, ¢ are points in J with s < ¢, then every point in (s, ?)
is in the interior of J.

10.29 Theorem. Let J be an interval in R, and let f:J — R be a contin-
uwous function on J. Then:

a) If f'(x) > 0 for all x € int(J), then f is increasing on J.
b) If f'(x) > 0 for all z € int(J), then f is strictly increasing on J.

() ()

() ()
¢) If f'(z) <0 for all z € int(J), then f is decreasing on J.
d) If f'(z) < 0 for all x € int(J), then f is strictly decreasing on J.
() ()

e) If f'(x) =0 for all z € int(J), then f is constant on J.

Proof: All five statements have similar proofs. I’ll prove only part a).

Suppose f'(z) > 0 for all z € int(J). Then for all s,t € J with s < ¢t we
have f is continuous on [s, ] and differentiable on (s, t), so by the mean value
theorem

s<t = wzf(c) for some ¢ € (s,t) C int(J)
= WZOandt—s>0

= f(t)—f(s)>0
= f(t) > f(s).

Hence, f is increasing on .J.

10.30 Exercise. Prove part e) of the previous theorem; i.e., show that if J
is an interval in R and f:J — R is continuous and satisfies f'(¢) = 0 for all
t € int(J), then f is constant on J. [It is sufficient to show that f(s) = f(¢)
for all s,t € J.]



192 CHAPTER 10. THE DERIVATIVE

10.31 Exercise. For each assertion below, either prove that the assertion
is true for all functions f, or give a function f for which the assertion is false.
(A proof may consist of quoting a theorem.)

a) If f is differentiable on (—1,1) and f is strictly increasing on (—1,1),
then f'(t) > 0 for all t € (—1,1).

b) If f is differentiable on [—1,1], and f has a maximum at ¢, € [—1,1],
then f'(ty) = 0.

c) If f is continuous on [—1,1] and f is differentiable on (—1,1), and
f'(t) >0 for all t € (—1,1), then f is strictly increasing on [—1, 1].

10.32 Theorem (Restriction theorem) Let S be a subset of C, let
f:8—=C, and let a € S be a point such that f is differentiable at a. Let T
be a subset of S containing a, and let f|r : T — C be the restriction of f to
T, i.e.

flr(z) = f(2) for all z € T.

If a is a limit point of T, then f|r is differentiable at a, and
flr(a) = f'(a).

Proof: Let {z,} be any sequence in 7'\ {a} such that {z,} — a. Then {z,} is
a sequence in S\ {a}, and hence

{f@ﬂ—f@%_+fm)

Zp — G

It follows that

{f|T(zn) - f|T(a)} _ {M} S Fa).

Zn — Q Zn — Q

I’ve shown that

lim flr(z) = flr(a)

ligg NI )

10.33 Definition (Path, line segment.) If a,b € C, then the path joining
a to b is the function Ag: [0,1] = C

Aap:t = a+t(b — a) for all t € [0,1]

and the set
Aab = Aap([0,1]) ={a+t(b—a):0 <t <1}

is called the line segment joining a to b.
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*

10.34 Example. We showed in example 10.9 that the function conj : z — 2z
is a nowhere differentiable function on C. I will show that for all a, b in C with
a # b, the restriction conj|s,, of conj to the line segment A is differentiable,

and
b* —a*

conj|s,, (2) = for all z € Ag.

Note that all points of A, are limit points of Agy. If 2 € Ag, then for some
real number ¢
z=a+tb—a) (10.35)

and
z¥=a"+t(b* —a"). (10.36)

If we solve equation (10.35) for ¢ we get

,_2—a
b—a
By using this value for ¢ in equation (10.36) we get

b* — a*
b—a

Let Hy, : C — C be defined by

2f=a" +

(z —a) for all z € Ag.

b* —a*

H =a"
ab(z) a + b—a

(z—a) for all z € C.

* *

b* —a

Then H,, is differentiable, and H'(z) = for all z € C. We have

—a
Hab|Aab = Conj |Aab’

so by the restriction theorem

b* — a*

conj|Aab/(z) = H‘Aab,(z) = for all 2z € A,

10.37 Exercise. Let C(0,1) denote the unit circle in C. Show that
conj|c(0,1) is differentiable, and that

conjo,y (2) = —(2*)? for all z € C(0,1).
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In general, the real and imaginary parts of a differentiable function are not
differentiable.

10.38 Example. If f(2) = z for all z € C, then f is differentiable
and f'(z) = 1. However, Ref is nowhere differentiable. In fact, if a € C,
Re(z) — Re(z)

1 i
has no limit at a. To see this, let a, =a+ —, b, = a + L for

z—a n n

all n € Z>;. Then {a,} — a, {b,} — a, and

Re(an) — Re(a) _ Re(a + +) — Re(a)

1 =1
a, — a a+ . —a

and
Re(b,) —Re(a) _ Re(a) — Re(a)
b, —a  a+ % —a

Re(an) — Re(a) }n>1 and {Re(bn) — Re(a)

Hence, the sequences have
ap, — b, —a o1

Re(z) — Re(a)

Z—Q

= 0.

does not exist.

different limits, so lim
zZ—a

However, we do have the following theorem.

10.39 Theorem. Let J be an interval in R and let f: J — C be a function
differentiable at a point a € J. Write f(t) = u(t) + iv(t) where u,v are real
valued. Then u and v are differentiable at a, and f'(a) = u'(a) + iv'(a).

Proof: Since f is differentiable at a there is a function D,f on J such that
D, f is continuous at a and

f@) = f(a)+ (t —a)D,f(t) for all t € J.
If r € R and ¢ € C, then Re(rc) = rRe(c) and Im(rc) = rIm(c), so
(Re(f))(t) = (Re(f))(a) + (t — a)(Re(D,f))(t) for all t € J (10.40)
and
(Im(f))(t) = (Im(f))(a) + (t — a)(Im(D, f))(t) for all t € J. (10.41)

Since D, f is continuous at a, Re(D,f) and Im(D, f) are continuous at a, so
equations (10.40) and (10.41) show that Ref and Imf are differentiable and

(Ref)'(a) = (Re(Daf(a)) =Re(f'(a))
(Imf)'(a) = (Im(Dqf(a))) =Im(f'(a)). ||
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10.42 Example. Let a € R, and let f(t) = (2t + 4a)? for all t € R. Then
f is differentiable and (by the chain rule),

f'(t) = 3(2t+ia)?-2
= 6[(4t* — a?) + 4diat|
= (24#* — 6a?) + 24iat.

We have by direct calculation,

ft) = 8t +12iat® — 6ta® — ia®
(8t* — 6ta®) + (12at* — a®)i,

SO
f(t) = (24t — 6a®) + (24at)i.

(This example just illustrates that the theorem is true in a special case.)

10.43 Theorem. Let f be a complex function and let a,b € C, and suppose
dom(f) contains the line segment Ay, and that f'(z) = 0 for all z € Ag.
Then f is constant on Agp; i.e., f(2) = f(a) for all z € Ag.

Proof: Define a function F:[0,1] — C by

F(t) = fQAa(t) = f(a+tb-a)).

By the chain rule, Fis differentiable on [0, 1] and F'(¢) = f' (a + t(b — a))-(b—a).
Since f'(z) = 0 for all z € Ay([0,1]), we have F'(t) = 0 for all ¢ € [0, 1]. Hence

(Re(F))'(t) = 0 and (Im(F))'(t) = 0 for all ¢ € [0, 1]

and hence
Re(F') and Im(F') are constant on [0, 1].

If Re(F) = p and Im(F') = ¢, then F(t) = p+iq for all ¢ € [0,1]. ||
10.44 Exercise. Let D(a,¢) be a disc in C.
a) Show that if b € D(a,¢) then the segment Ay is a subset of D(a,¢).

b) Let f: D(a,e) — C be a function such that f'(z) = 0 for all z € D(q,¢).
Show that f is constant on D(a,¢).
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10.3 Trigonometric Functions

10.45 Example. Suppose that there are real valued functions S,C on R
such that

S =C, S(0) =0,

You have seen such functions in your previous calculus course. Let H = S2+C?.
Then
H' =2858"+2CC"'=25C - 2CS = 0.

Hence, H is constant on R, and since H(0) = S?(0) + C?(0) = 0+ 1, we have
S?+C?=1onR.
In particular,
|S(t)] < 1and |C(t)| <1 forallteR.
Let K(t) = (S(t) + S(—t))* + (C(t) — C(~t))*. By the power rule and

chain rule,

K'(t)

= 2(5(t) +5(=1) (C@t) = C(=1))
= 0.
Hence K is constant and since K(0) = 0, we conclude that K(¢) = 0 for all

t. Since a sum of squares in R is zero only when each summand is zero, we
conclude that

S(—=t) = —=S(t)forallteR,
t) = C(t) forallt € R.

Let
Fy(t)=—-C(t)+ 1 forallt € R.

Then Fy(t) > 0 for all ¢ € R and Fy(0) = 0. I will now construct a sequence
{F.,} of functions on R such that F,,(0) = 0 for alln € N, and F}, ,(t) = F,(t)
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for all ¢t € R. I have

t2
ot
Fy(t) = S(t)+ 31
1
Fi(t) = —C(t)+ T 1,
P
It should be clear how this pattern continues. Since F|(t) = Fy(t) > 0, Fy
is increasing on [0,00) and since F;(0) = 0, Fy(¢) > 0 for ¢ € [0,00). Since
(0

Fj(t) = Fi(t) > 0 on [0,00), Fy is increasing on [0,00) and since F»(0) =
Fy(t) > 0 for t € [0, 00).

This argument continues (I'll omit the inductions), and I conclude that
F,(t) > 0 for all t € [0,00) and all n € N. Now

_ 42

3

t2 t4
Fy(t) > 0and Fy(t) 20 = 0<C(H) — 1+ 5 < 1,
3 °
Fy(t) > 0 and Fy(t) 20 = 0< S(t) —t+ 5 < o,
_ 46 t2 t4
Fy(t) > 0 and Fy(t) 20 = - < C() — 1+ 5; = ; <0.
For each n € N, t € C, define
_ (_1)nt2n
ni2n+1
sty =
(2n +1)!
e Vi
Cult) = )_c(t) = —,
jz:% ! Jz:% (24)!
n n ( 1)t2j+1
Sn(t) =) sit) =) ~——x
,-z:‘; ! ]Z:,; (27 + 1)
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The equations above suggest that for all n € N, ¢ € [0, 00),
C(t) = Cu(t)] < lensa(t)] (10.46)

and
15(t) = Su(t)] < |sn41(2)] (10.47)

I will not write down the induction proof for this because I believe that it
is clear from the examples how the proof goes, but the notation becomes
complicated.

Since C(t) = C(-t), Cn(t) = C,(—t) and ¢,(t) = c,(—t), the relation
(10.46) actually holds for all ¢ € R (not just for ¢ € [0,00)) and similarly
relation (10.47) holds for all t € R. From (10.46) and (10.47), we see that if
{cn(t)} is a null sequence, then the sequence {C,(t)} converges to C(t), and
if {s,(t)} is a null sequence, then {S,(¢)} converges to S(t).

We will show later that both sequences {C,(2)} and {S,(z)} converge for
all complex numbers z, and we will define

cos(z) = lim{C,(z)} = lim {i m} (10.48)

sin(z) = lim{S,(2)} = lim {Z M} (10.49)

(21 1)

for all z € C. The discussion above is supposed to convince you that for real
z this definition agrees with whatever definition of sine and cosine you are
familiar with. The figures show graphs of C), and S,, for small n.
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3.
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Pl
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Graphs of the polynomials S,, for 1 < n <10

LA

Graphs of the polynomials C, for 1 <n < 10

[=]

10.50 Exercise. Show that {c,(¢)} and {s,(¢)} are null sequences for all
complex ¢ with [¢| < 1.

10.51 Exercise. a) Using calculator arithmetic, calculate the limits of

1 1
{C’n (ﬁ)} and {Sn (E)} accurate to 8 decimals. Compare your results
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1 1
with your calculator’s value of sin (E) and cos (E) [Be sure to use radian
mode.]

b) Calculate cos(7) to 3 or 4 decimals accuracy. Note that cos(i) is real.

So Si

SQ 54

Polynomial Approximations to sine Function
—1.55 <x <155 —155<y<1.55

The figure shows graphical representations for Sy, Sy, Sz, and S;. Note
that Sy is the identity function.
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10.52 Entertainment. Show that for all a,z € R
Cla+z)=C(a)C(x) — S(a)S(x)

and

S(a+z) =8S(a)C(z) + C(a)S(z).

Use a trick similar to the trick used to show that S(—z) = —S(z) and
C(—z) = C(x).

10.53 Entertainment. By using the definitions (10.48) and (10.49), show
that

a) For all a € R, cos(ia) is real, and cos(ia) > 1.

b) For all a € R, sin(ia) is pure imaginary, and sin(ia) = 0 if and only if
a=0.

¢) Assuming that the identity

sin(z + w) = sin(z) cos(w) + cos(z) sin(w)
is valid for all complex numbers z and w, show that if « € R\ {0} then sin

maps the horizontal line y = a to the ellipse having the equation

.’L'2 y2

=1.
‘cos(ia)? | [sin(ia)

d) Describe where sin maps vertical lines. (Assume that the identity
sin®(z) + cos?(z) = 1 holds for all z € C.)

10.54 Note. Rolle’s theorem is named after Michel Rolle (1652-1719). An
English translation of Rolle’s original statement and proof can be found in [46,
pages 253-260]. It takes a considerable effort to see any relation between what
Rolle says, and what our form of his theorem says.

The series representations for sine and cosine (10.48) and (10.49) are usu-
ally credited to Newton, who discovered them some time around 1669. How-
ever, they were known in India centuries before this. Several sixteenth century
Indian writers quote the formulas and attribute them to Madhava of Sangam-
agramma (c. 1340-1425)[30, p 294].

The method used for finding the series for sine and cosine appears in the
1941 book What is Mathematics” by Courant and Robbins[17, page 474]. 1
expect that the method was well known at that time.



