Chapter 9

Properties of Continuous Functions

9.1 Extreme Values

- **9.1 Definition (Maximum, Minimum.)** Let $f: S \to \mathbf{R}$ be a function from a set S to \mathbf{R} , and let $a \in S$. We say that f has a maximum at a if $f(a) \geq f(x)$ for all $x \in S$, and we say f has a minimum at a if $f(a) \leq f(x)$ for all $x \in S$.
- **9.2 Definition (Maximizing set.)** Let $f: S \to \mathbf{R}$ be a function and let M be a subset of S. We say M is a maximizing set for f on S if for each $x \in S$ there is a point $m \in M$ such that $f(m) \geq f(x)$.
- **9.3 Examples.** If f has a maximum at a then $\{a\}$ is a maximizing set for f on S.

If M is a maximizing set for f on S, and $M \subset B \subset S$, then B is also a maximizing set for f on S.

If $f: S \to \mathbf{R}$ is any function (with $S \neq \emptyset$), then S is a maximizing set for f on S, so every function with non-empty domain has a maximizing set.

Let

$$f(z) = \begin{cases} \frac{1}{|z|} & \text{for } z \neq 0\\ 0 & \text{for } z = 0. \end{cases}$$

177

Then every disc $D(0,\varepsilon)$ is a maximizing set for f, since if $z \in \mathbb{C} \setminus \{0\}$ we can find $n \in \mathbb{N}$ with $n > \max\left(\frac{1}{\varepsilon}, \frac{1}{|z|}\right)$; then $n > \frac{1}{\varepsilon}$, so $\frac{1}{n} < \varepsilon$, so $\frac{1}{n} \in D(0,\varepsilon)$ and $f\left(\frac{1}{n}\right) = n > \frac{1}{|z|} = f(z)$. This argument shows that $\left\{\frac{1}{n+1} : n \in \mathbb{N}\right\}$ is also a maximizing set for f.

- **9.4 Remark.** Let S be a set, and let $f: S \to \mathbf{R}$, and let M be a subset of S. If M is not a maximizing set for f on S, then there is some point $x \in S$ such that f(x) > f(m) for all $m \in M$.
- **9.5 Lemma.** Let S be a set, let $f: S \to \mathbf{R}$ be a function, and let M be a maximizing set for f on S. If $M = A \cup B$, then at least one of A, B is a maximizing set for f on S.

Proof: Suppose $A \cup B$ is a maximizing set for f on S, but A is not a maximizing set for f on S. Then there is some $s \in S$ such that for all $a \in A$, f(s) > f(a). Since $A \cup B$ is a maximizing set for f on S, there is an element t in $A \cup B$ such that $f(t) \geq f(s)$, so f(t) > f(a) for all $a \in A$, so $t \notin A$, so $t \in B$. Now, for every $x \in S$ there is an element c in $A \cup B$ with $f(c) \geq f(x)$. If $c \in A$, then the element $t \in B$ satisfies $f(t) > f(c) \geq f(x)$ so there is some element $u \in B$ with $f(u) \geq f(x)$ (if $c \in A$, take u = t; if $c \in B$, take u = c.) Hence B is a maximizing set for f on S. \parallel

9.6 Theorem (Extreme value theorem.) Let $a, b \in \mathbf{R}$ with a < b and let $f: [a, b] \to \mathbf{R}$ be a continuous function. Then f has a maximum and a minimum on [a, b].

Proof: We will construct a binary search sequence $\{[a_n, b_n]\}$ with $[a_0, b_0] = [a, b]$ such that each interval $[a_n, b_n]$ is a maximizing set for f on [a, b]. We put

$$[a_0, b_0] = [a, b]$$

$$[a_{n+1}, b_{n+1}] = \begin{cases} \left[a_n, \frac{a_n + b_n}{2}\right] & \text{if } \left[a_n, \frac{a_n + b_n}{2}\right] \text{ is a maximizing set for } f \\ \left[\frac{a_n + b_n}{2}, b_n\right] & \text{otherwise.} \end{cases}$$

By the preceding lemma (and induction), we see that each interval $[a_n, b_n]$ is a maximizing set for f on [a, b]. Let c be the number such that $\{[a_n, b_n]\} \to c$

and let $s \in [a, b]$. Since $[a_n, b_n]$ is a maximizing set for f on [a, b], there is a number $s_n \in [a_n, b_n]$ with $f(s_n) \ge f(s)$. Since

$$a_n \le c \le b_n$$
 and $a_n \le s_n \le b_n$,

we have $|s_n - c| \le |b_n - a_n| = \frac{(b-a)}{2^n}$, so $\{s_n\} \to c$. By continuity of f, $\{f(s_n)\} \to f(c)$. Since $f(s_n) \ge f(s)$, it follows by the inequality theorem for limits that

$$f(c) = \lim\{f(s_n)\} \ge f(s).$$

Hence c is a maximum point for f on [a, b]. This shows that f has a maximum. Since -f is also a continuous function on [a, b], -f has a maximum on [a, b]; i.e., there is a point $p \in [a, b]$ such that $-f(p) \ge -f(x)$ for all $x \in [a, b]$. Then $f(p) \le f(x)$ for all $x \in [a, b]$, so f has a minimum at p. ||

- **9.7 Definition (Upper bound.)** Let S be a subset of \mathbb{R} , let $b, B \in \mathbb{R}$. We say B is an *upper bound* for S if $x \leq B$ for all $x \in S$, and we say b is a *lower bound* for S if b < x for all $x \in S$.
- **9.8 Remark.** If S is a bounded subset of R and B is a bound for S, then B is an upper bound for S and -B is a lower bound for S, since

$$|x| \le B \implies -B \le x \le B.$$

Conversely, if a subset S of **R** has an upper bound B and a lower bound b, then S is bounded, and $\max(|b|, |B|)$ is a bound for S, since

$$b \leq x \leq B \implies -\max(|b|,|B|) \leq -|b| \leq b \leq x \leq B \leq |B| \leq \max(|b|,|B|).$$

9.9 Theorem (Boundedness theorem.) Let $a, b \in \mathbf{R}$ with a < b and let $f: [a, b] \to \mathbf{R}$ be a continuous function. Then f is bounded on [a, b].

Proof: By the extreme value theorem, there are points $p, q \in [a, b]$ such that

$$f(p) \le f(x) \le f(q)$$
 for all $x \in [a, b]$.

Hence f([a, b]) has an upper bound and a lower bound, so f([a, b]) is bounded.

9.10 Exercise. Give examples of the functions described below, or explain why no such function exists. Describe your functions by formulas if you can, but pictures of graphs will do if a formula seems too complicated.

- a) $f:[0,1] \to \mathbf{R}$, f is not bounded.
- b) $g:(0,1)\to \mathbf{R}$, g is continuous, g is not bounded.
- c) $h: [0, \infty) \to \mathbf{R}$, h is continuous, h is not bounded.
- d) $k:[0,\infty)\to\mathbf{R}$, k is strictly increasing, k is continuous, k is bounded.
- e) $l:[0,1] \to \mathbf{R}$, l is continuous, l is not bounded.

9.2 Intermediate Value Theorem

9.11 Theorem (Intermediate Value Theorem.) Let $a, b \in \mathbf{R}$ with a < b, and let $f: [a, b] \to \mathbf{R}$ be a continuous function. Suppose f(a) < 0 < f(b). Then there is some point $c \in (a, b)$ with f(c) = 0.

Proof: We will construct a binary search sequence $[a_n, b_n]$ with $[a_0, b_0] = [a, b]$ such that

$$f(a_n) \le 0 \le f(b_n) \text{ for all } n. \tag{9.12}$$

Let

$$[a_0, b_0] = [a, b]$$

$$[a_{n+1}, b_{n+1}] = \begin{cases} \left[a_n, \frac{a_n + b_n}{2}\right] & \text{if } f\left(\frac{a_n + b_n}{2}\right) \ge 0 \\ \left[\frac{a_n + b_n}{2}, b_n\right] & \text{if } f\left(\frac{a_n + b_n}{2}\right) < 0. \end{cases}$$

This is a binary search sequence satisfying condition (9.12).

Let c be the number such that $\{[a_n, b_n]\} \to c$. Then $\{a_n\} \to c$ and $\{b_n\} \to c$ (cf theorem 7.87), so by continuity of f, $\{f(a_n)\} \to f(c)$ and $\{f(b_n)\} \to f(c)$. Since $f(b_n) \geq 0$ for all n, it follows by the inequality theorem that $f(c) = \lim\{f(b_n)\} \geq 0$, and since $f(a_n) \leq 0$, we have $f(c) = \lim\{f(a_n)\} \leq 0$. Hence, f(c) = 0.

- **9.13 Exercise (Intermediate value theorem.)** Let $a, b \in \mathbf{R}$ with a < b and let $f : [a, b] \to \mathbf{R}$ be a continuous function with f(a) < f(b). Let y be a number in the interval (f(a), f(b)). Show that there is some $c \in (a, b)$ with f(c) = y. (Use theorem 9.11. Do not reprove it.)
- **9.14 Notation** (x is between a and b.) Let $a, b, x \in \mathbf{R}$. I say x is between a and b if either a < x < b or b < x < a.

180

9.15 Corollary (Intermediate value theorem.) Let $a, b \in \mathbb{R}$ with a < b. Let $f: [a, b] \to \mathbb{R}$ be a continuous function with $f(a) \neq f(b)$. If y is any number between f(a) and f(b), then there is some $c \in (a, b)$ such that f(c) = y. In particular, if f(a) and f(b) have opposite signs, there is a number $c \in (a, b)$ with f(c) = 0.

Proof: By exercise 9.13, the result holds when f(a) < f(b). If f(a) > f(b), let g = -f. Then g is continuous on [a, b] and g(a) < g(b), so by exercise 9.13 there is a $c \in (a, b)$ with g(c) = 0, so -f(c) = 0 so f(c) = 0.

9.16 Example. Let A, B, C, D be real numbers with $A \neq 0$, and let

$$f(x) = Ax^3 + Bx^2 + Cx + D.$$

We will show that there is a number $c \in \mathbf{R}$ such that f(c) = 0. Suppose, in order to get a contradiction, that no such number c exists, and let

$$g(x) = \frac{f(-x)}{f(x)} = \frac{-Ax^3 + Bx^2 - Cx + D}{Ax^3 + Bx^2 + C + D}$$
 for all $x \in \mathbf{R}$.

(I use the fact that f(x) has no zeros here.) Then

$$\lim \{g(n)\}_{n\geq 1} = \lim \left\{ \frac{-A + \frac{B}{n} - \frac{C}{n^2} + \frac{D}{n^3}}{A + \frac{B}{n} + \frac{C}{n^2} + \frac{D}{n^3}} \right\}_{n\geq 1}$$
$$= \frac{-A + 0 + 0 + 0}{A + 0 + 0 + 0} = -1.$$

It follows that g(n) < 0 for some n, so f(-n) and f(n) have opposite signs for some n, and g is continuous on [-n, n], so by the intermediate value theorem, g(c) = 0 for some $c \in (-n, n)$, contradicting the assumption that g is never zero.

- **9.17 Exercise.** Give examples of the requested functions, or explain why no such function exists. Describe your functions by formulas if you can, but pictures of graphs will do if a formula seems too complicated.
 - a) $f:[0,1] \to \mathbf{R}$, f has no maximum.
 - b) $g:[0,\infty)\to \mathbf{R}$, g is continuous, g has no maximum.
 - c) $k:[0,\infty)\to \mathbf{R}$, k is continuous, k has no maximum or minimum.

181

d) $l:(0,1)\to \mathbf{R}$, l is bounded and continuous, l has no maximum.

9.18 Exercise. Let $f(x) = x^3 - 3x + 1$. Prove that the equation f(x) = 0 has at least three solutions in **R**.

9.19 Exercise. Let F be a continuous function from \mathbf{R} to \mathbf{R} such that

a) For all
$$x \in \mathbf{R}$$
, $(F(x) = 0) \iff (x^2 = 1)$.

b)
$$F(2) > 0$$
.

Prove that F(4) > 0.

9.20 Note. The intermediate value theorem was proved independently by Bernhard Bolzano in 1817 [42], and Augustin Cauchy in 1821[23, pp 167-168]. The proof we have given is almost identical with Cauchy's proof.

The extreme value theorem was proved by Karl Weierstrass circa 1861.