Chapter 9

Properties of Continuous
Functions

9.1 Extreme Values

9.1 Definition (Maximum, Minimum.) Let f: S — R be a function
from a set S to R, and let a € S. We say that f has a marimum at a if
f(a) > f(z) for all x € S, and we say f has a minimum at a if f(a) < f(z)
forall z € S.

9.2 Definition (Maximizing set.) Let f: S — R be a function and let M
be a subset of S. We say M is a mazrimizing set for f on S if for each z € S
there is a point m € M such that f(m) > f(z).

9.3 Examples. If f has a maximum at a then {a} is a maximizing set for

fonS.

If M is a maximizing set for f on S, and M C B C S, then B is also a
maximizing set for f on S.

If f: S — R is any function (with S # (), then S is a maximizing set for f
on S, so every function with non-empty domain has a maximizing set.

f(z):{ﬁ for z #0

Let

0 forz=0.
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Then every disc D(0,¢) is a maximizing set for f, since if z € C\{0} we can
11 1 1 1

find n € N with n > max (—,—); then n > =, so — < ¢,s0 — € D(0,¢) and
e’ |z| e n n

1 1 1
f (—) =n > — = f(z). This argument shows that {

n || n+
maximizing set for f.

1:nEN} is also a

9.4 Remark. Let S be a set, and let f: S — R, and let M be a subset of
S. If M is not a maximizing set for f on S, then there is some point x € S
such that f(z) > f(m) for all m € M.

9.5 Lemma. Let S be a set, let f:S — R be a function, and let M be a
mazimizing set for f on S. If M = AU B, then at least one of A,B is a
mazximizing set for f on S.

Proof: Suppose AUB is a maximizing set for f on S, but A is not a maximizing
set for f on S. Then there is some s € S such that for all a € A, f(s) > f(a).
Since A U B is a maximizing set for f on S, there is an element ¢ in AU B
such that f(t) > f(s), so f(t) > f(a) foralla € A, sot ¢ A, sot € B. Now,
for every x € S there is an element ¢ in AU B with f(c) > f(z). If ¢ € A,
then the element ¢ € B satisfies f(t) > f(c) > f(z) so there is some element
u € B with f(u) > f(z) (if ¢ € A, take u = t; if ¢ € B, take u = ¢.) Hence B
is a maximizing set for f on S. ||

9.6 Theorem (Extreme value theorem.) Let a,b € R with a < b and
let f:[a,b] — R be a continuous function. Then f has a mazimum and a
minimum on |a, b].

Proof: We will construct a binary search sequence {[ay, b,|} with [ag, by| = [a, b]
such that each interval [a,, b,] is a maximizing set for f on [a,b]. We put

[a'O’bO] = [a’b]
[an+1>bn—|—1] = {

[an, %] if [an, @] is a maximizing set for f

[%, bn] otherwise.

By the preceding lemma (and induction), we see that each interval [a,, b, is
a maximizing set for f on [a,b]. Let ¢ be the number such that {[a,,b,]} — ¢
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and let s € [a,b]. Since [a,,b,] is a maximizing set for f on [a,b], there is a
number s, € [a,, b,] with f(s,) > f(s). Since

an < ¢ < b, and a, < s, < by,

(b—a)
2n
{f(sn)} — f(c). Since f(s,) > f(s), it follows by the inequality theorem

for limits that

we have |s, —c¢| < |b, — an| = , 80 {s,} — c¢. By continuity of f,

fle) =lim{f(sn)} = f(s).
Hence ¢ is a maximum point for f on [a, b]. This shows that f has a maximum.
Since —f is also a continuous function on [a, b], — f has a maximum on |[a, b|;
i.e., there is a point p € [a, b] such that —f(p) > —f(z) for all x € [a,b]. Then
f(p) < f(z) for all € [a, b], so f has a minimum at p. ||

9.7 Definition (Upper bound.) Let S be a subset of R, let b, B € R. We
say B is an upper bound for S if x < B for all z € S, and we say b is a lower
bound for Sifb<z forallz € S.

9.8 Remark. If S is a bounded subset of R and B is a bound for S, then
B is an upper bound for S and —B is a lower bound for S, since

lt] < B = —B<z<B.

Conversely, if a subset S of R has an upper bound B and a lower bound b,then
S is bounded, and max(|b|, |B|) is a bound for S, since

b<w<B = —max(}b|,B|) < —|b| <b<z<B<|B| < max(|p],|B|).

9.9 Theorem (Boundedness theorem.) Let a,b € R with a < b and let
f:la,b] = R be a continuous function. Then f is bounded on [a,b].

Proof: By the extreme value theorem, there are points p, q € [a, b] such that
flp) < f(z) < f(q) for all z € [a, b].
Hence f([a, b]) has an upper bound and a lower bound, so f([a, b]) is bounded. ||

9.10 Exercise. Give examples of the functions described below, or explain
why no such function exists. Describe your functions by formulas if you can,
but pictures of graphs will do if a formula seems too complicated.
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a) f:[0,1] = R, f is not bounded.

b) ¢:(0,1) — R, g is continuous, g is not bounded.

)
) g

¢) h:[0,00) — R, h is continuous, h is not bounded.

d) k:]0,00) — R, k is strictly increasing, k is continuous, & is bounded.
)

e) 1:[0,1] — R, [ is continuous, [ is not bounded.

9.2 Intermediate Value Theorem

9.11 Theorem (Intermediate Value Theorem.) Leta,b € R witha < b,
and let f:[a,b] — R be a continuous function. Suppose f(a) < 0 < f(b). Then
there is some point ¢ € (a,b) with f(c) = 0.

Proof: We will construct a binary search sequence [a,, b,] with [ag, by] = [a, b]
such that
flan) <0< f(by,) for all n. (9.12)

Let

[ag, o] = [a,b]
oy =[] i >
an »y¥n

+15 On+1 [an;—bn’bn] iff(an;rbn) <0.

This is a binary search sequence satisfying condition (9.12).

Let ¢ be the number such that {[a,,b,]} — ¢. Then {a,} — ¢ and
{bn,} — ¢ (cf theorem 7.87), so by continuity of f, {f(a,)} — f(c) and
{f(bn)} = f(c). Since f(b,) > 0 for all n, it follows by the inequality theorem
that f(c) =lim{f(b,)} > 0, and since f(a,) < 0, we have f(c) = lim{f(a,)}< 0.
Hence, f(c) = 0. ||

9.13 Exercise (Intermediate value theorem.) Let a,b € R with a < b
and let f : [a,b] — R be a continuous function with f(a) < f(b). Let y be a
number in the interval (f(a), f(b)). Show that there is some ¢ € (a,b) with
f(c) =y. (Use theorem 9.11. Do not reprove it.)

9.14 Notation (z is between a and b.) Let a,b,z € R. I say z is between
a and b if either a <z <borb<z < a.



180 CHAPTER 9. PROPERTIES OF CONTINUOUS FUNCTIONS

9.15 Corollary (Intermediate value theorem.) Let a,b € R with a < b.

Let f:[a,b] — R be a continuous function with f(a) # f(b). Ify is any number
between f(a) and f(b), then there is some ¢ € (a,b) such that f(c) =y. In
particular, if f(a) and f(b) have opposite signs, there is a number ¢ € (a,b)
with f(c) = 0.

Proof: By exercise 9.13, the result holds when f(a) < f(b). If f(a) > f(b), let
g = —f. Then g is continuous on [a, b] and g(a) < g(b), so by exercise 9.13
there is a ¢ € (a, b) with g(c) =0, so —f(c) =0so0 f(c) =0. |

9.16 Example. Let A, B,C, D be real numbers with A # 0, and let
f(z) = Az® + Ba® 4+ Cx + D.

We will show that there is a number ¢ € R such that f(c) = 0. Suppose, in
order to get a contradiction, that no such number c exists, and let

f(-z) —Az*+ Ba*—-Cz+D

= = for all R.
9() f(z) A*+ B2+ C+D O ° ve

(I use the fact that f(z) has no zeros here.) Then

B C D
A+t utwtw Jus

—A4+04+0+0
A4+0+0+0

lim{g(n)}n>1 = lim

It follows that g(n) < 0 for some n, so f(—n) and f(n) have opposite signs for
some n, and g is continuous on [—n,n], so by the intermediate value theorem,
g(c) = 0 for some ¢ € (—n,n), contradicting the assumption that g is never
Zero.

9.17 Exercise. Give examples of the requested functions, or explain why
no such function exists. Describe your functions by formulas if you can, but
pictures of graphs will do if a formula seems too complicated.

a) f:[0,1] = R, f has no maximum.
b) ¢:[0,00) = R, g is continuous, g has no maximum.

c¢) k:[0,00) = R, k is continuous, k£ has no maximum or minimum.
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d) 1:(0,1) — R, [ is bounded and continuous, ! has no maximum.

9.18 Exercise. Let f(z) = 23 — 3z + 1. Prove that the equation f(z) =0
has at least three solutions in R.

9.19 Exercise. Let I be a continuous function from R to R such that
a) For all z € R, ((F(a:) =0) <= (2*= 1))
b) F(2) > 0.

Prove that F'(4) > 0.

9.20 Note. The intermediate value theorem was proved independently by
Bernhard Bolzano in 1817 [42], and Augustin Cauchy in 1821[23, pp 167-168].
The proof we have given is almost identical with Cauchy’s proof.

The extreme value theorem was proved by Karl Weierstrass circa 1861.



