Chapter 7

Complex Sequences

In definition 5.1, we defined a sequence in C to be a function f:IN — C.
Since we are identifying R with a subset of C, every sequence in R is also a
sequence in C, and all of our results for complex sequences are applicable to
real sequences.

7.1 Some Examples.

7.1 Notation () I will say “consider the sequence n — 2™ or “consider
the sequence f:n +— 2"” to mean “consider the sequence f: N — C such that
f(n) =2 for all n € N”. The arrow + is read “maps to”.

7.2 Definition (Geometric sequence.) For each a € C, the sequence
n— "
is called the geometric sequence with ratio a.
I will often represent a sequence f in C by a polygonal line with vertices

f(0), f(1), £(2),- - - The two figures below represent geometric sequences with

+1 2+ .
and respectively.

ratios

125
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Yy Yy
«) - x - x
{59 (&)
Figure a.  Geometric Sequences
7.3 Definition (Geometric series.) If o € C, then the sequence

n

Jo:M > Z o’ is called the geometric series with ratio c.

§=0
go={L,1+a,1+a+oc*1+a+a’*+a? -}
Yy Yy
1 1
x x
1 1

2 3

Figure b.  Geometric Series {Z o’ }
i=0

Figure b shows the geometric series corresponding to the geometric se-
quences in figure a. If you examine the figures you should notice a remarkable
similarity between the figure representing {a"} and the figure representing

{éoﬂ}.
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7.4 Entertainment. Describe the apparent similarity between the figure

for {a"} and the figure for {>_a’}. Then prove that this similarity is really
=0
present for all « € C\{1}.

7.5 Definition (Constant sequence.) For each o € C, let & denote the
constant sequence @:n +— «; i.e., @ = {o,a,a,a,- -}

7.2 Convergence

7.6 Definition (Convergent sequence.) Let f be a complex sequence,
and let L € C. We will say f converges to L and write f — L if for every disc
D(L,r) there is a number N € N such that

for every n € Z>y, (f(n) € D(L,7)).

We say f converges if there is some L € C such that f — L. We say [ diverges
if and only if f does not converge.

It appears from figure a on page 126 that for every disc D(0,7) centered

1+2\"
at 0 the terms of the sequence {(%) } eventually get into D(0,7); i.e., it

14+2\" 1+ 20\"
}—>0.

appears that {( } — 0. Similarly, it appears that {(

From figure b, it appears that there are numbers P, () such that
LS A nr1+ 20\
{Z ( —2|_2> } — P, and {Z ( —; l) } — @. You should be able to put
Jj=0 j=0
your finger on P and (), and maybe to guess what their exact values are. We
will return to these examples later.

T+ 241
Let w = + ok

It appears from the figure that there is no number L such that {w"} — L.

. The figure in the margin represents the sequence {w"}.

The following theorem shows that this is the case.

T+24i| /49+576_1)
N 625

7.7 Theorem. Let w € C satisfy jw| > 1 and w # 1. Then {w"} diverges.

(Note that
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Proof: Suppose that |w| > 1 and w # 1. Then for all n € N,

|w™ —w"™| = |w"(1 —w)| = |w|*|1 —w| > |1 —w|>0. (7.8)
Now suppose, to get a contradiction, that there is a number L € C such that
{w"} — L. Then corresponding to the disc D (L, | —wl
N € N such that

) , there is a number

1 —
nEZZN:>w”ED<L,| 2w|>.

In particular,

1-— 1-—
wNED<L,| w|> and wN+16D<L,| w|>

2 2
SO ) )
™ - L| < 1 —wl and [wNtt — L] < \—27w|
By the triangle inequality,
" — ™ = J(w" — L) + (L —w™)
< |w" - L| +|L — w™|
< ‘1_w|_}_‘1_w‘ |1 ‘
= |1 —w|.
2 2

Combining this result with (7.8), we get
11— w| < |Jw" —wV T < |1 —wl,

so |1 —w| < |1 — w|. This contradiction shows that {w™} diverges. ||
We can also show that constant sequences converge.
7.9 Theorem. Let o € C. Then the constant sequence & converges to .
Proof: Let o € C. Let D(a, ) be a disc centered at . Then

a(n) = a € D(a,r) for all n € Zx,
Hence, & — a. ||

For purposes of calculation it is sometimes useful to rephrase the definition

of convergence. Since the disc D(a,r) is determined by its radius r, and for
all z € C, z € D(a,7) <= |z — | < r, we can reformulate definition 7.6 as
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7.10 Definition (Convergence.) Let f be a sequence in C, and let L € C.
Then f — L if and only if for every r € R* there is some N € N such that

for every n € Z>y, (|f(n)—L|<r).

7.3 Null Sequences

Sequences that converge to 0 are simpler to work with than general sequences,
and many of the convergence theorems for general sequences can be easily
deduced from the properties of sequences that converge to 0. In this section
we will just consider sequences that converge to 0.

7.11 Definition (Null sequence.) Let f be a sequence in C. We will say
f is a null sequence if and only if for every e € R™ there is some N € N such
that for every n € Z>y, (|f(n)| <e).

By comparing this definition with definition 7.10, you see that
(f is a null sequence ) < (f — 0).
Definition 7.11 is important. You should memorize it.

7.12 Definition (Dull sequence.) Let f be a sequence in C. We say f is
a dull sequence if and only if there is some N € N such that for every € in R™,
and for every n € Z>n (|f(n)| < e).

The definitions of null sequence and dull sequence use the same words, but
they are not in the same order, and the definitions are not equivalent.
If f satisfies condition (7.12), then whenever n > N,

for every e in R* (|f(n)| <é¢).

If |f(n)| € R*, this condition would say |f(n)| < |f(n)|, which is false. Hence
if n > N, then |f(n)| ¢ RT; ie., if n > N, then f(n) = 0. Hence a dull
sequence has the property that there is some N € N such that f(n) = 0 for
all n > N. Thus every dull sequence is a null sequence. The sequence

111
1.2.-. 2
{’ 3’450’0,0’0’0’ }
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is a dull sequence, but
{1} _{1 111111 }
nfos1 U72°3°4°5°6°7

1
is not a dull sequence. In the next theorem we show that {—},>; is a null
ninz

sequence, so null sequences are not necessarily dull.

7.13 Theorem. For all a € C, {ﬁ

} 1s a null sequence .
nJn>1

Proof: Let ¢ € R". By the Archimedean property for R, there is an N € Z™

such that N > ‘i. Then for alln € Z™,
£

nzN:>n>M:>M<s,
€ n

soforalln e Zsy (‘%‘ < 5)- I

The difference between a null sequence and a dull sequence is that the “N”
in the definition of null sequence can (and usually does) depend on &, while
the “N” in the definition of dull sequence depends only on f. To emphasize
that N depends on ¢ (and also on f), I will often write N(g) or Ny(e) instead
of N.

Here is another reformulation of the definition of null sequence.

7.14 Definition (Precision function.) Let f be a complex sequence. Then
f is a null sequence if and only if there is a function Ny: RT — N such that

for alle > 0 and all n € N; (n > Nf(e) = |f(n)| <e).
I will call such a function Ny a precision function for f.

This formulation shows that in order to show that a sequence f is a null
sequence, you need to find a function Ny: RT — N such that

foralln e N (n> Ny(e) = |f(n)] <e¢).
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In the proof of theorem 7.13, for the sequence g:n — 4 we had
n

Ny(e) = ( some integer N such that % < 5) :

This description for Ny could be made more precise, but it is good enough for
our purposes.

7.15 Theorem. If a € C\{0}, then the constant sequence & is not a null
sequence.

Proof: If o # 0, then i]a| € R*. Suppose, to get a contradiction, that
@ is a null sequence. Then there is a number N € N such that for all
neN (n >N = |a(n)| < %|Oz\) Then for all n € N,

2
If n = N +1 then (7.16) is false and this shows that & is not a null sequence. ||

1 1
(nzN = |a\<§|a\ = 1<—). (7.16)

7.17 Theorem (Comparison theorem for null sequences.) Let f, g be
complex sequences. Suppose that f is a null sequence and that

lg(n)| < |f(n)| for all n € N.
Then g s a null sequence.

Proof: Since f is a null sequence, there is a function N;: RT — N such that
for all n € N,
n> Ni(e) = |f(n)| <e.

Then
n> Ni(e) = [g(n)| < |f(n)] <e = |g(n)| <e.

Hence, we can let N, = Ny. ||

1 1
7.18 Example. We know that n < 2" for all n € N, so on < — for all
n n

1
n € Zs1. Since {—} is a null sequence, it follows from the comparison
n nJn>1

for all

1 1
theorem that {—} is a null sequence. Also, since < —
2" ) >t n4+n_"n

n € Zs1, we see that { } is a null sequence.
N n>1

nz4+n
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7.19 Theorem (Root theorem for null sequences.)
1
Let f:N — [0,00) be a null sequence, and let p € Z>,. Then f7 is a null
1
sequence where f%(n) = (f(n))? for alln € N.

Scratchwork: Let g = f%. I want to find N, so that for all n € N and all
e €RY,

n> Ny(e) = lg(n)[ <e
ie.

n> Ny(e) =

le.
n> Ny(e) = f(n) <e”.
This suggests that I should take Ny(¢) = Ny(eP).

ol

Proof: Let f be a null sequence in [0,00) and let N; be a precision function
for f. Define Nj:R" — N by N,(e) = Nj(eP) for all ¢ € R*. Then for all
n €N,

n>Ny(e) = n> Ny
[f(n)] <&
0< f(n) <eP
fm)'r<e
g(n) < e.

FEELY

~—

Hence N, is a precision function for g. ||

2

7.20 Examples. Let c € R". Then {C—} is a null sequence in [0, 00),
n n>1

C
so it follows that {—} is a null sequence.
n>1

Vn
- 1
Consider the sequence f:Z>; = C, f:n—=n+ 3~ vn? +n.
For all n € Z>4,

00 = (o 4) - vores) L
GRS R

ntitViEtn A(ntb+verta)
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1 1 . .
Hence |f(n)| < S < —, so it follows from the comparison theorem that f is
n
a null sequence
Since { } is a null sequence, it follows from the root theorem that

1 1
— is a null sequence. Now .72 = 49 < =, 50 .7 < \/7
{ <\/§> }nZI 2’ 2 \/_

1 n
)" < |—=| for all n € Z-,, and by another comparison test, {.7"} is a
V2 -

null sequence. Since ((\a\ <.7) = (Ja"] < .7”)), it follows that {a"},>1 is
a null sequence for all o € C with |o] < .7.

You probably suspect that {«"} is a null sequence for all @« € C with
|a| < 1. This is correct, but we will not prove it yet.

142\"
7.21 Exercise. Show that the geometric sequences {( ;Z> } and

2 +3\"
{( ;Z> } that are sketched on page 126 are in fact null sequences.

7.22 Exercise. Which, if any, of the sequences below are null sequences?
Justify your answers.

2) (V10000 — v/i}nos
D )

n®>+6
c) 3
ns + 3n 1

7.23 Entertainment. Show that

{(1 = 1072)"} = {.99999999999999999999"}

is a null sequence. (If you succeed, you will probably find a proof that {a"}
is a null sequence whenever |o| < 1.) NOTE: If you use calculator operations,
then {(1 —1072°)"} is not a null sequence on most calculators.
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It follows from remark 5.38 that we can add, subtract and multiply com-
plex sequences, and that the usual associative, commutative, and distributive

laws hold. If f = {f(n)} and g = {g(n)} then f + g = {f(n) + g(n)} and
(fg)(n) ={f(n)-g(n)}. If a, B € C then the constant sequences @, § satisfy

a+B=a+p, of=ap.

7.24 Exercise. Which of the field axioms are satisfied by addition and
multiplication of sequences? Does the set of complex sequences form a field?
(You know that the associative, distributive and commutative laws hold, so
you just need to consider the remaining axioms.

7.25 Notation. If f is a complex sequence, we define sequences f*, Ref,
Imf, and |f| by

fr(n) = ( (n))" for allm € N,
(Ref)(n) = Re(f(n)) for allm € N,
(Imf)(n) = Im(f(n)) foralln € N,

Ifl(n) = |f( )| for all n € N.

7.26 Theorem. Let f be a complex null sequence. Then f*, Ref, Imf and
|f| are all null sequences.

Proof: All four results follow by the comparison theorem. We have, for all
n € N:

() = 1(f(n)*]| = [f(n)],
(Ref)(n)] = [Re(f(n))| < |f(n)];
(Imf)(n)| = [m(f(n))] < [f(n)],

£ = [f(m)l- |

7.4 Sums and Products of Null Sequences

7.27 Theorem (Sum theorem for null sequences.) Let f,g be complex
null sequences and let o« € C. Then f+ g, f — g, and af are null sequences.
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Scratchwork for aof: I want to find N, so that
n > Nyple) = |af(n)| <e
i.e. .
n > Nos(e) = |f(n)] < ol
This suggests that I take N,f(¢) = Ny <ﬁ>
Scratchwork for f + g: I want to find Ny, so that

n > Npygle) = |f(n) +9(n)| <e.

135

Now [f(n) + g(n)| < |f(n)] + [g(n)], and T can make |f(n)| + |g(n)| < e by
making |f(n)| < /2 and |g(n)| < /2. Hence I want Ny, ,(¢) > N¢(¢/2) and

Nyig(e) > Ny (%) This suggests that I take Nyy4(¢) = max (Ny(e/2), Ny(g/2)).

Proof: Let f, g be null sequences, and let @ € C. Define Ny, R* — N by

Nyig(e) = max (Ng(e/2), Ny(e/2)) .
Then for all n € N,

n > Nppgle) = n > Ng(e/2) and n > N,y(e/2)
= |[f(n)| <e/2 and |g(n)| < &/2
— [f() + gm)| < |F(m)| + lg(m)] < 5 +

= [(f+9)n)| <e.

€
2

Hence, Ny, is a precision function for f + g, and f + g is a null sequence.
If « = 0 then aof = 0 is a null sequence. Suppose a # 0, and define

NafZR+—)be
g
Nysle) =N | — | .
7(€) f<|a|>

n> Ny = nsz<i>

Then for all n € Z,

o

= |f(n)| s%

= la| [f(n)|<e
= |af(n)| <e.
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Hence N, is a precision function for af, and hence af is a null sequence.
Since f — g = f + (—1)g it follows that f — g is a null sequence. ||

7.28 Exercise (Product theorem for null sequences.) Let f, g be com-
plex null sequences. Prove that fg is a null sequence.

7.5 Theorems About Convergent Sequences

7.29 Remark. Let f be a complex sequence, and let L € C. Then the
following three statements are equivalent.

a) f— L
b) f— L is a null sequence.

¢) |f —L| is a null sequence.

Proof: By definition 7.10, “f — L” means

for every 7 € R™ there is some N € N such that
for every n € Zsy, (|f(n) — L| <7).

By definition 7.11, “f — L is a null sequence” means

for every € € R™ there is some N € N such that
for every n € Zsy,|(f — L)(n)| <e. (7.30)

Both definitions say the same thing. If we write out the definition for “|f — L
is a null sequence” we get (7.30) with “|(f — L)(n)| < &” replaced by

“If = i|(n)| < e.” Since

(f = D)) = [£(n) = L| = ||f = LI(n)

I

conditions b) and c) are equivalent. ||

7.31 Theorem (Decomposition theorem.) Let f be a convergent complez
sequence. Then we can write

f=k+e

where k is a null sequence, and ¢ is a constant sequence. If f — L, thenc = L.
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Proof: f=(f—L)+ L. |

7.32 Theorem (Sum theorems for convergent sequences.) Let o € C
and let f,qg be convergent complex sequences. Say f — L and g — M. Then
f+g, f—g and af are convergent and

f+9g - L+ M
f—-9g — L-M
af — alL.

Proof: Suppose f — L and ¢ — M. By the decomposition theorem, we can
write 3 :
f=k+Landg=p+ M

where k£ and p are null sequences. Then
(f£g)—(LEM)=(k+L)+(p+M)—(L+M)=k+p.

By the sum theorem for null sequences, k+p is a null sequence, so (f+g)—L M

is a null sequence, and hence f g — L+ M. |

7.33 Exercise. Prove the last statement in theorem 7.32; i.e., show that if
f — L then af — aL for all o € C.

7.34 Theorem (Product theorem for convergent sequences.) Let f, g
be convergent compler sequences. Suppose f — L and g — M. Then fg is
convergent and fg — LM.

Proof: Suppose f — L and ¢ — M. Write f = k+ L, g = p+ M where k,p
are null sequences. Then

fg = (k+L)p+M)
= kp+Lp+ Mk+ LM
= kp+Lp+ Mk + LM.
Now kp, Lp and Mk are null sequences by the product theorem and sum

theorem for null sequences, and LM — LM, so by several applications of the
sum theorem for convergent sequences,

fg—=>0+0+0+LM; ie. fg— LM. |
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7.35 Theorem (Uniqueness theorem for convergent sequences.) Let
f be a complex sequence, and let L,M € C. If f — L and f — M, then
L=M.

Proof: Suppose f — L and f — M. Then f— L and f— M are null sequences,
so (f—L)—(f—M) = M—L =M — Lis anull sequence. Hence, by theorem
715, M — L=0;ie, L=M. |

7.36 Definition (Limit of a sequence.) Let f be a convergent sequence.
Then the unique complex number L such that f — L is denoted by lim f or

Hm{f(n)}.

7.37 Remark. It follows from the sum and product theorems that if f and
g are convergent sequences, then

lim(f +¢) =limf +limg

and
lm(f-g) =limf-limg
and
limef = clim f.

7.38 Warning. @ We have only defined lim f when f is a convergent se-
quence. Hence lim{i"} is ungrammatical and should not be written down.
(We showed in theorem 7.7 that {i"} diverges.) However, it is a standard us-
age to say “lim f does not exist” or “lim{ f(n)} does not exist” to mean that
the sequence f has no limit. Hence we may say “lim{i"} does not exist”.

7.39 Theorem. Let f be a compler sequence. Then f is convergent if and
only if both Ref and Imf are convergent. Moreover,

limf = limRef +ilimImf, (7.40)

limRef Re(lim f),
limImf = Im(lim f).
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Proof: If Ref and Imf are convergent, then it follows from the sum theorem
for convergent sequences that f is convergent and (7.40) is valid.

Suppose that f — L. Then f — L is a null sequence, so Re(f — L) is a null
sequence (by Theorem 7.26). For all n € N,

Re(f — L)(n) = Re (f(n) — L) = Ref(n) — ReL = (Ref — ReL)(n)

so (Ref —ReL) = Re(f—L) is a null sequence and it follows that Ref converges
to ReL. A similar argument shows that Imf — ImL. ||

7.41 Definition (Bounded sequence.) A sequence f in C is bounded, if
there is a disc D(0, B) such that f(n) € D(0,B) for all n € N; ie., f is
bounded if there is a number B € [0, 00) such that

|f(n)| < B for all n € N. (7.42)

Any number B satisfying condition (7.42) is called a bound for f.

N N
Zn‘: n <1 for all
n+ n+1 n+1

n € N. The sequence {n} is not bounded since the statement |n| < B for
all n € N contradicts the Archimedean property of R. Every constant se-
quence {L} is bounded. In fact, |L| is a bound for L.

7.43 Examples. is bounded since

7.44 Exercise (Null-times-bounded theorem.) Show that if f is a null
sequence in C, and ¢ is a bounded sequence in C then fg is a null sequence.

The next theorem I want to prove is a quotient theorem for convergent
sequences. To prove this, I will need some technical results.
7.45 Theorem (Reverse triangle inequality.) Let o, € C, then
la— 8] > |al —|B].

Proof: By the triangle inequality.
ol =[(a=B) + B8] < |a— B +|B].

Hence,

ol = 8] < Ja— Bl |
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7.46 Lemma. Let f be a convergent sequence that is not a null sequence;
1
i.e., f — L where L # 0. Suppose f(n) # 0 for alln € N. Then 7 is a

bounded sequence.

Proof: Since f — L, we know that f — L is a null sequence. Let N;_; bea
precision function for f — L. Then for all n € N,

n>N; (%) = |f(n)—L\<%

— B ) s = 1f )

2
L L
— =~ H =T
2 2
f)| — |L]
L
e, it M= N; j (%), then
1 2
n>M —= |—| < —.
‘f(n) |L|
Let
. 2 1
~ L osmsie | f(m) )
1 1
Then |——| < B for m € Zy<,,<m and ‘—‘ < B for m € Zsy, so
f(m) o f(m) B
‘ﬁ‘ < B for all m € Z>y = N, and hence 7 is bounded. ||

7.47 Theorem (Reciprocal theorem for convergent sequences.) Let
g be a complexr sequence. Suppose that g — L where L # 0, and that g(n) # 0
1

1
for all n € N. Then — is convergent, and — — T
g g



7.5. THEOREMS ABOUT CONVERGENT SEQUENCES 141

1
Proof: By the preceding lemma, — is a bounded sequence, and since ¢ — L,
g
L
g

we know that g — L is a null sequence. Hence (9 —L)--=1—

9

is a null

L
sequence, and it follows that — — 1. Then we have
g

= - —-1=

@ |

1.
L’

e~ =
e~ =

1

g

.1 . 1 m

ie, — = —.
bl g L

7.48 Exercise (Quotient theorem for convergent sequences.) The
following statement isn’t quite true. Supply the missing hypotheses and prove
the corrected statement.

Let f, g be convergent complex sequences. If f — L and g — M, then i
g
. f L
t and = — —.
is convergent an p i

7.49 Exercise.

a) Let f, g be complex sequences. Show that if f converges and g diverges,
then f + g diverges.

b) Show that if f converges and g diverges, then fg does not necessarily
diverge.

7.50 Exercise. Let f be a divergent complex sequence. Show that if
c € C\{0}, then cf is divergent.

7.51 Example. Let f:Z>; — C be defined by

n?+in+1
= 7.52
J0) = s am =1 (7.52)
Then
n?(1+i4+% 1+i+%
f(n) — ( ;LZ nf) _ + Ti + n22i. (7.53)
n2(3+g—p) (3—m)+ﬁ
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Hence f can be written as a quotient of two sequences:

1

h:?%l—)l—l—l-i-—2
non

and

1 2
g:nl—>(3——2>+—
n n

where g(n) # 0 for all n € Z>4. Since
- 1 1 1
SRLCINE
nJ)n>1 nJn>1 nJn>1
~ 1 (1
RO
nJnp>1 nJn>1

it follows from numerous applications of product and sum rules that h — 1

and

1
and g — 3 # 0 and hence f = — — 3 Once I have expressed f(n) in the final

form in (7.53), I can see what the final result is, and I will usually just write

1+£+#}_}1+0+0_1

1 2 9
3 n2+n

Uy ={ e L

7.54 Example. Let g:IN — C be the sequence

_ . 7.55
g {4n n 6”} (7.55)

Then for all n € N,

Cpw m(2

g(n)

Since
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In the last two examples, I was motivated by the following considerations.
I think: In the numerator and denominator for (7.52), for large n the “n®”
term overwhelms the other terms — so that’s the term I factored out. In the
numerator of (7.55), the overwhelming term is 4", and in the denominator, the
overwhelming term is 6™ so those are the terms I factored out.

7.56 Exercise. Let {f(n)} be a sequence of non-negative numbers and

suppose {f(n)} — L where L > 0. Prove that {\/f(n)} = VL. (NOTE: The
case L = 0 follows from the root theorem for null sequences.

7.57 Exercise. Investigate the sequences below, and find their limits if
they have any.

1+ 3n+ 3in?
wf={——————}
n>1

1+ 2in + 5n?

n?+3in+1

SPLELES

ne+n-+1 n>1

(4+ 1) 16

¢) h=q—"5—
/ 1
d)k:{ 1+—}
n

n>1

_ 2 _
e) = {\/n +n n}nZl
7.58 Exercise. Show that the sum of two bounded sequences is a bounded
sequence.

7.59 Theorem (Convergent sequences are bounded.) Let {a,} be a
convergent complex sequence. Then {a,} is bounded.

Proof: T will show that null sequences are bounded and leave the general case
to you. Let f be a null sequence and let N be a precision function for f.
Let
B =max (1, e (7G)).

0<j <Ny
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I claim that B is a bound for f. If n € Zo<j<ny(1), then

F)| < max (70)) < B.

= 0<j<N;
If n € Zsn,q), then n > Ny(1), so [f(n)] <1 < B. Hence
|f(n)| < B for all n € Zo<j<n;1) U Z>n;(1)s
ie, |f(n)| < BforallneN.|

7.60 Exercise. Complete the proof of theorem 7.59; i.e., show that if {a,}
is a convergent complex sequence, then {e,} is bounded.

7.61 Example. It follows from the fact that convergent sequences are
bounded, that {n} is not a convergent sequence.

7.62 Exercise. Give an example of a bounded sequence that is not conver-
gent.

7.6 Geometric Series

7.63 Theorem ({r%} —1.) Ifr e RF, then {r=} — 1.

Proof:

Case 1: [r > 1]. By the formula for factoring s™ — a™ (3.78), we have for all
’I’LEZZl andallszl

(5"—1)2(5—1)2&2(s—l)ilj:n(s—l)

SO

If we let s = = in this formula, we get

1
Irs — 1| =rs —1< —(r —1).

3

Since {T _

n
for null sequences that {r'/» — 1} — 0; i.e., {r%} 1.

1
} is a null sequence, it follows from the comparison theorem



7.6. GEOMETRIC SERIES 145

1
Case 2: [0 <r < 1] Let R=—. Then R > 1, so by Case 1, {R%} — 1. By
r
1
} — 1; i.e., {r%} — 1.

1
n

the reciprocal theorem {

We have shown that the theorem holds in all cases. ||

7.64 Theorem (Convergence of geometric sequences.) Let o € C.
Then

{a"} = 0if|a| <1
{a"} = 1ifa=1
{a"} diverges if |a| > 1 and o # 1.

Proof: The last assertion was shown in theorem 7.7, and the second statement
is clear, and it is also clear that {a"} — 0if a = 0.
Suppose that 0 < |a| < 1. I will show that

1
o] < 3 for some k € IN. (7.65)
It will then follow that
\" 1
0"k = (Jaff)" < <§> = foralln e N.

Since {5} is a null sequence, it follows from the comparison theorem for null
sequences that {|a"|F} is a null sequence, and then by the root theorem for

null sequences (Theorem 7.19), it follows that {a"} is a null sequence.
1

1. L
To prove (7.65), let N be a precision function for {(5)" - 1}, and let

k= N(1—|a|). Then

(1)%—1‘<1—\a\ sol—(l)% <1-—lal, so
. 2 ’ 2 ’
la| < (i)z and hence || < I, which is what we wanted to show. ||

7.66 Theorem (Geometric series.) Let o € C. If |a| < 1, then the
geometric series

n
Ja:N > Z o’
=0

converges to . If |a| > 1, then g, diverges.

_a.
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n+1
Proof: We saw in theorem 3.71 that g,(n Z =% foralla # 1.

If « =1, go(n) = n+ 1. This sequence dlverges since it is not bounded. If
la| < 1, then by the previous theorem {a"} — 0, so

1 o 1 o 1

f} = {7 - arb o - 0=

1—« 1l—-a 1—a«a 1—a’

Suppose now |« > 1 and « # 1. Then for all n € N we have

o = l.aﬂﬂzl 1_(1_05).1_70/1—1—1
o o 1«
_ 1- (-
a

Hence for all L € C we have

{ga(m)} — L = far} —» 179

By theorem 7.7, if |a|] > 1 and « # 1, then {a"} diverges, and hence
{ga(n)} — L is false for all L € C; i.e., g, diverges. ||

n

7.67 Notation. If {a;};> is a sequence of digits, then we denote > %
j=1

by .aias - - - a,. Thus

14159—1—|—4+1—|—5+9
10 102 10%  10* 105

and

.351351351

S S T S N T O B
N 10 100 1000 104 105 10% 107 108 109
B (351)[1+ L 1]

N 1000 103~ 106

351 A1

1000 & 10%



7.6. GEOMETRIC SERIES 147

7.68 Example. Let a,b,c be digits, and let

1

abc

=0

so informally, z,, = .abcabc - - - abc. Then {z,} is a convergent sequence, and
—_—

3(n+1) digits

(2.} — abc 1 abc
Tn . =—.
1000 1— o 999
As an example, we have
351 39 13

{.351,.351351,.351351351, - -} — - = = = 2
999 ~ 111 37

7.69 Exercise. Let
{a,} ={.672,.67272,.6727272, .672727272, - - '}nZl-

Show that {a,} converges to a rational number.

7.70 Exercise.
n 3\J 4N
a) Let {a,} =¢>° ((g> + <5> 2) . Does {a,} converge? If it does,
=0
find lim{a,} in the form a + bi where a,b € R.

b) Let {b,} =< (32 Z) . Does {b,, } converge? If it does, find lim{b,, }

j=0
in the form a + bi where a,b € R.

c) Let {c,} = {Zn: ((g)J + <%)]>} Does {c,} converge? If it does,

S5

find lim{c,} in the form a + bi where a,b € R.
=0

i(l;i)j}and{

=0

7.71 Exercise. Show that the sequences {

(which are drawn on page 126) converge, and that the limits appear to be in
agreement with Figure b) on page 126.
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7.72 Entertainment (Snowflakes) Let F be an equilateral triangle with

RS

Snowflakes

area A, and side s. Note that an equilateral triangle with side s has area 9
Starting with E, we will now construct a sequence {S,} of polygons. S, will
have 4" - 3 sides, all having length ;—n We let Sy = E (so Sy has 4° - 3 sides of

s . . .
length @) To construct S,,;1 from S,, we attach an equilateral triangle with

1
side of length 3 side (S,,) to the middle third of each side of S,,.

The bottom side of S, will be replaced by V' . Each side of

1
S, is replaced by 4 sides of length 3 (3%), 0 Sp41 will have 4-(4"3) = 4"*1.3

The figure shows some of these polygons. I will call the

sides of length Py
polygons S,, snowflake polygons. We have S, C S,41 for all n. The snowflake
S is the union of all of the sets S,; i.e., a point x is in .S if and only if it is in
S,, for some n € N.

Find the area of S, (in terms of the area A of F), for example

A 4
—A+3(2)=2a
area(Sh) +3 (9 ) 3

Then find the area of S in terms of A. Make any reasonable assumptions that
you need. What is the perimeter of S?

7.7 The Translation Theorem

7.73 Theorem. Let f be a real convergent sequence, say f — L. If f(n) >0
for all n € N, then L > 0.

Proof: I note that L € R, since if f — L, then Ref — ReL. Suppose, to get a
L
contradiction, that L < 0, (so -3 > 0), and let N, ; be a precision function
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- L - L
for the null sequence f—L. Let N = N;_j <—§> Then |(f — L)(N)| < 5

L L L
so |f(N)—L| < —5 and hence f(N) < L — 573 < 0. This contradicts

the assumption that f(/NV) > 0 for all n € N. ||

7.74 Exercise (Inequality theorem.) Let f,g be convergent real se-
quences. Suppose that f(n) < g(n) for all n € N. Prove that lim f < limg.

7.75 Exercise. Prove the following assertion, or give an example to show
that it is not true. Let f,g be convergent real sequences. Suppose that
f(n) < g(n) for all n € N. Then lim f < lim g.

7.76 Definition (Translate of a sequence.) Let f be a sequence and let
p € N. Then the sequence f,:n — f(n + p) is called a translate of f.

1 1 1 1

777 Example. Iff = {?, ?’ E, Ty, m, .- '}, then

f: { 111 L At late of i

PR e e s v ST ranslate of a sequence is a sequence
527 62’ 72 (n+5)?

obtained by ignoring the first few terms.

7.78 Theorem (Translation theorem.) If{f(n)} is a convergent complez
sequence, andp € N, then { f(n+p)} converges, and im{ f(n)} = lim{ f(n+p)}.
Conversely, if {f(n+p)} converges, then {f(n)} converges to the same limit.

Proof: Let f — L, let fy(n) = f(n + p) and let N;_; be a precision function

for f — L. I claim N i 1s also a precision function for f, — L. In fact, for all
n €N, and alle € R,

n>N; j(e) = n+p>N; j(e) = [f(n+p)— L[ <e.

Conversely, suppose

{fp(n)} ={f(n+p)} =L
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and let N _; be a precision function for f, — L. Let N(e) =p+ N, _i(e) for
alle € R*. I claim N is a precision function for N s—i- ForallneN,

n > N(eg) n>p+N; ;(e)

n—p>N;_;e)

|fp(n—p)—L| <e¢
|f(n) = L| <e. |

FEE L

7.79 Example. Let the sequence f be defined by

f0) = 1,
1
1) = ———— forall N.
f(n+1) T () oralln e
Then
1 1
I =751=s
1 1 2
1@ = 7T =73173
1+1 2
1 1 3
fB3) = = =z
1+1+% 1+2 5

Suppose I knew that f converged to a limit L. It is clear that f(n) > 0 for all
n, so L must be > 0. By the translation theorem

1 1 1
L=1 D} =1l = =
m{f(n+1)} 1m{1+f(n)} [ +hmf(n) 1+1
14144 —-1-+/1+4
so L(1+L) = 1;i.e.,, L24+L—1 = 0. Hence L € { + 5 + : 5 + },
. VE-1 | .
and since L > 0, we conclude L = . I’'ve shown that the only thing
1
that f can possibly converge to is . Now

3—1
0<L<T:1, so [1—-L|<1.
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SinceL:p%L,we have for all n € N,
_ 1 L—f(n) 1L — f(n)]
fnt+1) L] = 1+ f(n) 1+L‘_‘(1+f(n))(1+L) = 1+L
= L|L - f(n)] = LIf(n) - LI.
Hence
f(1)— L] < L[f(0)-L|=L1-L| <L,
f(2) - L| < L|f(1) - LI < L7
f(3) = L| < L|f(2) - LI <L,

and by induction,
\f(n)— L| < L" for all n € Z5.

By theorem 7.64 {L"} is a null sequence, and by the comparison theorem for
null sequences, it follows that {f(n) — L} is a null sequence. This completes
the proof that f — L. ||

7.80 Exercise. Let

f0) = -2
_ f(m)?+2
f(n+1) = WforallnEN.

a) Assume that f converges, and determine the value of lim{ f(n)}.

b) Calculate f(1), f(2), f(3), f(4), using all of the accuracy of your calcu-
lator. Does the sequence appear to converge?

7.81 Entertainment. Show that the sequence f defined in the previous
exercise converges. We will prove this result in Example 7.97, but you can
prove it now, using results you know.

7.82 Exercise. Let g be the sequence defined by

9(0) = 1,
9(1) = 1,
1 1
gn+2) = MforallnEN.

g9(n)
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a) Assume that g converges, and determine the value of lim{g(n)}.

b) Calculate g(1), ¢(2), 9(3), g(4),9(5), g(6), using all of the accuracy of your
calculator. Does this sequence converge?

7.83 Theorem (Divergence test.) Let f, g be compler sequences such that
g(n) # 0 for all n € N. Suppose that g — 0 and f — L where L # 0. Then

= diverges.
g

Proof: Suppose, to get a contradiction, that g converges to a limit M. Then

by the product theorem, g - i converges to 0 - M = 0; i.e., f — 0. This
g
contradicts our assumption that f has a non-zero limit. ||
7.84 Exercise. Prove the following assertion or give an example to show
that it is not true: Let f, g be complex sequences such that g(n) # 0 for all
n € N, but ¢ — 0. Then i diverges.
g

nd + 3n
n?+1

7.85 Example. Let f(n) = { } for all n € Z;. Then

Since 5
lim{(1+—2>} =14+0#0,
n n>1
and
. 1 1
hm{—<1+—>} =0-(140)=0,
n n/J)n>1

it follows that f diverges.

7.86 Exercise. Let A, B,a,b be complex numbers such that an+ b # 0 for
An+ B

an—+b

all n € Z>,. Discuss the convergence of {

} . Consider all possible
n>1
choices for A, B, a,b. B
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7.8 Bounded Monotonic Sequences

7.87 Theorem. Let {[ay,b,]} be a binary search sequence in R. Suppose
{[an, bn]} — ¢ where c € R.Then {b, — a,} is a null sequence. Also {a,} — ¢
and {b,} — c.

bo —
Proof: We know that b, — a,, = oinao’ and that {2%} is a null sequence, so

{b, — a,} is a null sequence. Since {[a,,b,]} — ¢ we know that a, < ¢ < b,
for all n € N, and hence

0 < by — | < |bp — ay| and 0 <lc—an| < |by — ay|

for all n € N. By the comparison theorem for null sequences it follows that
{¢—a,} and {b, — c} are null sequences, and hence {a,} — cand {b,} — c. |

7.88 Definition (Increasing, decreasing, monotonic) Let f be a real
sequence. We say f is increasing if f(n) < f(n+1) for all n € N, and we say
f is decreasing if f(n) > f(n+ 1) for all n € N. We say that f is monotonic
if either f is increasing or f is decreasing.

7.89 Theorem. Let f be an increasing real sequence. Then for all k,n € N
flk) < f(k+n).
Proof: Define a proposition form P on N by
P(n) = “for all k € N(f(k) < f(k+n))”, for all n € N.

Then P(0) says “for all k € N(f(k) < f(k))”, so P(0) is true. Since f is
increasing, we have for all n € N,

P(n) = forall k € N(f(k)

—> for all k € N(f(k)
= P(n+1).

(k+mn) < f((k+n)+1))

<f
< flk+(n+1)))

By induction, we conclude that P(n) is true for all n € N, i.e.

for all n € N(for all k € N(f(k) < f(k+mn))). |
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7.90 Corollary. Let f be an increasing real sequence. Then for all
k,n € N,
k<n = f(k) < f(n). (7.91)

Proof: For all k,n € N
k<n— n—keN = [(k) < f(k+(n—k) = f(n). |

7.92 Definition (Upper bound, lower bound.) Let f be a real sequence.

We say that f has an wupper bound if there is a number U € R such that
f(n) < U for all n € N. Any such number U is called an upper bound for
f.- We say that f has a lower bound if there is a number L € R such that
L < f(n) for all n € N. Any such number L is called a lower bound for f.

7.93 Examples. If f(n) = % for all n € N then 1 (or any number
greater than 1) is an upper bound for f, and —1 (or any number less than —1)
is a lower bound for f. The sequence g : n +— n has no upper bound, but 0 is

a lower bound for g.

7.94 Exercise. In definition 7.41, we defined a complex sequence f to
bounded if there is a number B € [0, 00) such that |f(n)| < B for all n € N.
Show that a real sequence is bounded if and only if it has both an upper bound
and a lower bound.

7.95 Theorem (Bounded monotonic sequences converge.) Let f be
an increasing sequence in R, and suppose f has an upper bound. Then f
converges. (Similarly, decreasing sequences that have lower bounds converge.)

Proof: Let B be an upper bound for f. We will construct a binary search
sequence {[a,, b,]} satisfying the following two conditions:

i. For every n € N, b, is an upper bound for f,

ii. For every n € N, a, is not an upper bound for f.
Let

lag,bo] = [f(0)—1,B]
s buns] = { [an, an;bn] if 242 5 an upper bound for

[%, bn] if 22P2 is not an upper bound for f.
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A straightforward induction argument shows that {|a,, b,]} satisfies con-
ditions i) and ii).

Let ¢ be the number such that {[a,,b,]} — ¢. I will show that f — c.

We know that {b, —a,} = {®5%} is a null sequence. Let N be a precision
function for {b, — a,}, so that for all ¢ € R,

n>N(e) = |b, —a,| <e.

I will use N to construct a precision function K for f — ¢.

Let ¢ € R*. Since an(e) is not an upper bound for f, there is a num-
ber K(e) € N such that f(K(e)) > an¢). By condition i), I know that
f(n) < by for all n € N. Hence, since f is increasing, we have for all n € N:

n>K() = ane) < f(K(€)) < f(n) < by
= f(n) € [an(e), bnee)l-

Since {[ayn, by]} — ¢ we also have
C € [an(e), bnee)]-

Hence
|f(n) —c| < by —ang) < e foralln > K(e).

This says that K is a precision function for {f(n) — ¢}, and hence f — ¢ ||

7.96 Corollary. Let f be a real sequence. If f has an upper bound, and
there 1s some N € N such that

f(n+1)> f(n) foralln € Zsy

then f converges. Similarly, if f has a lower bound, and there is some N € N
such that

f(n+1) < f(n) foralln € Zsy

then f converges.

7.97 Example. Let a € R". Define a sequence {z,} by

To = a—+1
2
P x’é;_afor all n € N.
n
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We have z, > 0 for all n. Suppose {z,} converges to a limit L. Since
20, Tps1 = xi 4+ a for all n € N, we can use the translation theorem to
show that

2L* = 2lim{z, }lim{x,,,} = lim{z2 + a} = L* +q,

so 2L? = L? + a, and hence L? = a, so L must be +y/a. Since z,, > 0 for
all n, it follows from the inequality theorem that L > 0, and hence if {z,}
converges, it must converge to \/a. In order to show that {z,} converges, it
is sufficient to show that {z,} is decreasing. (We’ve already noted that 0 is a

lower bound.)
Well,

2+a 222-122-a 12-a
Tp — Tpt1 = Tn — = = )
2%y, 2xy, 2%,

so if T can show that 22 —a > 0 for all n € N, then I'll know that {z,} is
decreasing. Now

9 2 +a ? T} + 2022 + a?
Ti—a = —a= 5 —a
2z, dzz
_ zp 42022 + @ — daz? (22 — a)? >0
4a? 42 T

I also note that 3 —a = a> + a + 1 > 0, so I finally conclude that {z,} is
decreasing, and hence {z,} — \/a. In fact, this sequence converges very fast,
and is the basis for the square root algorithm used on most computers.

7.98 Example ({n=}) We will show that {n%}nzl — 1.
Claim: {n%}nzgg is a decreasing sequence.
Proof: For all n € Z>1,

(n+1)n+r1 < = (n+1)" < np"tt

(" : 1)n <n. (7.99)

We will show by induction that (7.99) holds for all n € Zs3. Let

n+1
n

) <n” for all n € Z>3.

P =
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Then P(3) says (3)* < 3, which is true since 64 < 81. For all n € Z3,

P(n) = (n+1>n <n

n

G =" (65m)

n+1\" n+1 n?+2n \"™ n+1
() ozt
n n nZ4+2n+1 n
2 n+1
N (n+ ) <n+l
n+1
= P(n+1).

By induction, P(n) is true for all n € Z>3, and the claim is proved.
Let L = lim{nw}. Then {(2n)2a} — L, since any precision function for
{nw} is also a precision function for {(2n)27}. Hence

I = lim{((2n)%)"} = lim{25ns} =1- L = L.

Thus L? = L, and hence L € {0,1}. Since n» > 1for all n € Z>3 it follows
from the inequality theorem that L > 1, and hence L = 1. ||

7.100 Exercise. Show that the sequence
60"
{—'} = {1, 60, 1800, 36000, - - -}
n!

is a null sequence.

7.101 Exercise. Criticize the following argument.

1
We know that {1+—} —-1+0=1.
nJn>1

1 n
Hence {(1 + —) } S|
n n>1

7.102 Note. I got the idea of using precision functions from a letter by
Jan Mycielski in the Notices of the American Mathematical Society[34, p 569].
Mycielski calls precision functions Skolem functions.
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The snowflake was introduced by Helge von Koch(1870-1924) who pub-
lished his results in 1906 [32]. Koch considered only the part of the boundary
corresponding to the bottom third of our polygon, which he introduced as an
example of a curve not having a tangent at any point.

The sequence g from Exercise 7.82 is taken from [12, page 55, ex 20]



