Chapter 6

The Complex Numbers

Many of the results in this chapter are informal and geometrical, and do not
follow logically from our assumptions. I will freely use properties of similar
triangles, parallelograms, and trigonometric functions. Some of the results
(e.g., those involving trigonometric identities) will be rederived later in a more
rigorous form. Every statement labeled Theorem or Definition is part of
our logical development.

6.1 Absolute Value and Complex Conjugate

6.1 Definition (Complex Numbers, C.) We denote the complexification
of R by C, and we call C the complex numbers.

6.2 Definition (Absolute value.) In exercise 4.23 we showed that (for any
field F' in which —1 is not a square), if z = a + bi = (a,b) € Cp, then

Zz2=ad’+ bW €F.

If we are working in C, then a® + b*> € [0,00) and hence zz* has a unique
square root in [0, 00), which we denote by |z| and call the absolute value of z.

2] = (2*2)'/? for all z € C.
We note that

|z| € RT U {0} for all 2z € C.
|zl =0 <= z=0.
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Also note that for z € R, this definition agrees with our old definition of
absolute value in R.

6.3 Definition (Real and imaginary parts.) Let z € C and write
z = x + 1y where z,y € R. We call x the real part of z, and we call y
the imaginary part of z (note that the imaginary part of z is real), and we
write

z =Re(z), y=1Im(z)if z = (z,y) =z + 1y.

6.4 Theorem. Let z,w be complex numbers. Then

a) |zw| = |2| Jwl.
2| _ 2l

b) wl = Tw] if w#0.

c) Re(z) = z—;z*
z—2z"

d) Im(z) = 5

¢) [Re(z)| < |zl

f) Mm(z)] < [2].

g) 2" = [2.

h) Re(z + w) = Re(z) + Re(w).
i) Im(z + w) = Im(2) + Im(w).

Proof: By using properties of the complex conjugate proved in exercise 4.23,

we have
zw|? = (2w)*(2w) = 2*w*zw = 22w w = |2|*|w|?.

Hence by uniqueness of square roots, |zw| = |z| |w|. The proofs of b), c), d),
e), f), g), h) and i) are left to you. ||

6.5 Exercise. Prove parts b), ¢), d), e), f), g), h) and i) of Theorem 6.4.
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6.6 Theorem (Triangle inequality.) Let z,w € C. Then
|z +w| < |z| + |w].
Proof: For all z,w € C,

z+w? = (z4+w)*(z+w) =" +w)- (2 +w)
224 2w+ wz + wrw
= 2P+ 2w+ w'z + |w]’ (6.7)

Now since z** = z, we have

Z'w + wz (z"w) + (z"w)*
2Re(z*w) < 2|Re(z*w)|

< 22'w| = 2|2 |w| = 2|7] |w.

Hence, from (6.7),
|2+ wl? < [2]* + 22| Jw| + |w|* = (2] + [w])?,
and it follows that
|2+ w| < [2] + [w]. |
6.2 (Geometrical Representation

Since C = R X R, we can identify complex numbers with points in a plane.

Y
z2=x 41y
-
=%y Zr=x -1y
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Then R is identified with the z-axis, and points on the y-axis are of the
form 7y where y is real. 1 will call the z-axis the real azis, and T’ll call the
y-axis the imaginary axis. If z € C, then z* represents the result of reflecting
z about the real axis. Also —z represents the result of reflecting z through the
origin.

w = (¢,d)

|

|d —b]

|

—Jc—a| — u=(cb)

z = (a,b)

If z = (a,b) and w = (¢, d) are two points in C, and u = (¢, b), then z,u, w
are the vertices of a right triangle having legs of length |c — a|, and |d — b|. By
the Pythagorean theorem, the distance from w to z is \/ (c—a)?+ (d—b)2.
Also,

lw—2z = |(c+1id) — (a+ib)|
= |(c—a)+i(d—0)|
\/(c—a)2 + (d — b)?

= distance from w to z,

and in particular, for z = 0,

|lw| = distance from w to 0.

Claim: If z,w € C, then z+ w is the fourth vertex of the parallelogram having

consecutive vertices z, 0, w.
S=z+4+w

Z =z
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To make this look like a geometry proof, I’ll denote points by upper case
letters, and let AB denote the distance from A to B. Let O = 0, W = w,
Z =2,5=2z+w. Then

ZS =l|(z4+w)—z|=|w| =|w—-0]=0W

WS =|(z+w)—w|=|z|=|z—0=0Z.

Hence, since the quadrilateral OW SZ has opposite sides equal, it is a paral-
lelogram.

We can now give a geometrical interpretation for the triangle inequality
(which motivates its name). In the figure above,

|z +w| < |z| + |wl

says
05 <0Z+Z5;

i.e, the sum of two sides of a triangle is greater than or equal to the third side.
This is proposition 20 of book 1 of Euclid [19] “In any triangle, two sides taken
together in any manner are greater than the remaining one.” (Euclid did not
consider triangles in which all three vertices lie on a line.)

It was the habit of the Epicureans, says Proclus ... to ridicule this
theorem as being evident even to an ass, and requiring no proof,
and their allegation that the theorem was “known” (yvdpruov)
even to an ass was based on the fact that, if fodder is placed at
one angular point and the ass at another, he does not, in order to
get his food, traverse the two sides of the triangle but only the one
side separating them [19, vol. I page 287].

6.8 Definition (Circle, disc.) Let a € C,r € R*. The circle with center
o and radius 7 is

Clayr) = {z€C:lz—a|l=71}
= set of points whose distance from a is 7.

The open disc with center o and radius r is

D(a,r)={2€C:|z—a| <1},
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and the closed disc with center o and radius r is

D(a,r)={2€C:|z—a| <71}

C(0,1) is called the unit circle, and D(0,1) is called the unit disc. A complex
number z is in the unit circle if and only if |z| = 1.

6.9 Warning. The word “circle” is sometimes used to mean “disc”, al-
though the word “disc” is never used to mean “circle”. When you see the
word “circle” used in a mathematical statement, you should determine from
the context which of the two words is meant. For example, in the statement
“the area of the unit circle is 7”7, the word “circle” means “disc”, since the
unit circle is, in fact, a zero-area set. In these notes the word “circle” always
means “circle” except on page 92.

6.10 Theorem. The product of two numbers in the unit circle is in the unit
circle.

Proof: Let o, 8 € C(0,1); i.e., |a| = |8 = 1. Then |af| = |a||f| =1-1=1,
so af € C(0,1). |
We can also give a geometrical interpretation to the product of two complex

numbers. Let « = A and § = B be complex numbers and let C' = af. Let
O=0andlet I =1.
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Then AOIA is similar to AOBC'. The proof consists in showing that

O IA OA
OB BC 0OC’

(6.11)

6.12 Exercise. Prove the equalities listed in (6.11). Assume « ¢ {0,1} and
B #0.

From the similarity of AOIA and AOBC, we have /IOA = /BOC. In
particular, if we take o« = a € R", we get the picture

Yy af

where
angle(1-0-a)= angle (5-0-af),
which indicates that af lies on the line through 0 that passes through 5. Also

|aB| = la] [B] = alB|

so the length of af is obtained by multiplying the length of 3 by a.
The figure below shows the powers of a complex number a.

D

|a.|<1 |a|>l |a|:]_

Powers of a: I =1, A=a, B=a?, C = a% D = a*.
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In each case the four triangles ATOA, AAOB, ABOC, and ACOD are
all similar. In the third figure, where a is in the unit circle, the triangles

AIOA, AAOB, ABOC and ACOD aée in fact congruent.

af B

If o, B are points on the unit circle, then
angle(3-0-a5) = angle(1-0-a),
which indicates that af is the point in the unit circle such that
angle(1-0-a8) = angle(1-0-a) + angle(1-0-5).
From trigonometry, you know that the point on the unit circle making angle
6 with the segment OI is (cos#,sinf) = cos @ + isiné.
The previous geometrical argument suggests that

(cos @ + isinB)(cos ¢ + isin @) = (cos(f + ¢) + isin(f + ¢)) . (6.13)

6.14 Exercise. Using standard trigonometric identities, prove (6.13), and
show that (cosf + isinf) ! = cosf — isinf for all § € R.

6.15 Exercise. Let # € R. Let n € N. Prove that
(cos B + isin#)"™ = cos(nh) + isin(nh). (6.16)

Then show that formula (6.16) is in fact valid for all n € Z. (Formula (6.16)
is called De Moivre’s Formula.)

6.3 Roots of Complex Numbers

I expect from (6.16) that every point (cosf,sin @) in the unit circle has nth
roots for all n € Z>4, and that in fact

<cos (g> + ¢sin <Q>> = cosf +isinf.
n n

In particular, each vertex of the regular n-gon inscribed in the unit circle and
having a vertex at 1 will be an nth root of 1.
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6.17 Exercise. The figure below shows the seventeen points

2wy .. 2@y .
— —1:0< .
{(cos T + 7 sin 17) 0_]<17}

4 4 10 10
Let w = (cos ll + ¢sin —W> and u = (cos el + ¢sin —7T> Draw the poly-

17 17 17 17
gons l-w-w?-- - —-w!” and 1-u-u’----u'" on different sets of axes, (i.e. draw
segments connecting 1 to w, w to w?, - - -, w'® to w'”, and segnents joining 1
to u, -+ -, u'® to ul".)

6.18 Exercise. The sixth roots of 1 are the vertices of a regular hexagon
having one vertex at 1. Find these numbers (by geometry or trigonometry) in
terms of rational numbers or square roots of rational numbers, and verify by
direct calculation that all of them do, in fact, have sixth power equal to 1.

6.19 Theorem (Polar decomposition.) Let z € C\{0}. Then we can
write z = ru where r € R and u € C(0,1). In fact this representation is

unique, and
z
r=|z|, u=—.

2]

I will call the representation
z =ru wherer € R*, u e C(0,1)

the polar decomposition of z, and I’ll call r the length of z, and I'll call u the
direction of z.

Proof: If 2 = ru where r € R* and |u| = 1, then we have

lz| =|ru| =|r||ul=7-1=r.
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This shows that r = |z|, and it then follows that u = Z_ ﬁ Since ﬁ

= W =1, we see ﬂ € C(0,1) and z = |2| W gives the desired decompo-
z 5 -

sition. ||

6.20 Notation (Direction.) I will refer to any number in C(0,1) as a
direction.

6.21 Example. The polar decomposition for —1 + 7 is

(-1+i) = [=1+4] (fli)

—1+i
)

. . 3T 3T
I recognize from trigonometry that

—% + %) = (cosz +isinz).
6.22 Remark. Let z,w € C\{0}. Let z = ru and w = sv be the
polar decompositions of z, w, respectively, so r,s € R";u,v € C(0,1). Then
zw = rusv = (rs)(uv) where rs € R™ and uv € C(0,1). Hence we have
length of product = product of lengths
and
direction of product = product of directions.

6.4 Square Roots

Let u be a direction in C'(0,1), with u # —1. Then we know that 1,0, u,1+u
are the vertices of a parallelogram.

u 1+u
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Since |u| = |1| = 1, all four sides of the parallelogram are equal, and thus
the parallelogram is a rhombus. Since the diagonals of a rhombus bisect its
angles, the segment from 0 to 1+ u bisects angle (1-0-u). Hence I expect that

the direction of 1+ u (i.e., |) is a square root of u. I can prove that this

1+
1+u
is the case without using any geometry.

1
6.23 Theorem. Let u be a direction in C with u # —1. Then I I u‘ a
U
square root of u.
. +u
Proof: I just need to square . Well,
11+ ul
1+u 2_(1+u)2_ (1+u)?  14u
T+ul)  [4u2 (Q4+w)(l+u)  1T+u

Now since u is a direction, we know that uu* = 1, and hence
I+u  wu4u  u(u*+1) |||
= = = U.
1+u  1+uwr (14 u¥)

6.24 Corollary. Fvery complex number has a square root.

Proof: Let o € C. If a = 0, then clearly « has a square root. If o # 0, let ru
14u

11+ ul

be the polar decomposition for a.. If u # —1, then +r2 ( > are square

roots of a. If u = —1, then +724 are square roots of a. ||

6.25 Example. We will find the square roots of 21 —20:. Let o = 21 —20s.
Then

la| = V212 + 202 = /441 + 400 = /841 = 29.
Hence the polar decomposition for « is
21 — 20:
29
The square roots of o are

t(1+u 5o (Lt~
i2< > = =+ <|1 21 220gz>

11+ ul

21 —20¢

— 99
@ ( 29

)zruwhereT:29andu:

29

= +v29 ++/29
<|50—20|> (\5—22\>
Now |5 — 2i| = /25 + 4 = /29, so the square roots of o are (5 — 21).
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6.26 Exercise. Find the square roots of 12+ 5i. Write your answers in the
form a + bi, where a and b are real.

Let a,b € R. There is a formula for the square root of a 4+ bi that allows
you to say

the square roots of 2 + 47 are + (\/\/5 +1+ z\/\/g — 1) (6.27)

and

the square roots of 6 — 2i are =+ (\/\/E +3— i\/\/ 10 — 3) : (6.28)

6.29 Exercise. Verify that assertions (6.27) and (6.28) are correct.

6.30 Entertainment. Find the square root formula, and prove that it is
correct. (There are at least three ways to do this. Method c) is probably the
easiest. )

a) Suppose the square root is ¢ + di, and equate the real and imaginary
parts of (¢ + di)? and a + bi. Then solve for ¢ and d and show that your
solution works.

b) Let ru be the polar decomposition of a + bi. You know how to find a
square root v for u, and rav will be a square root, of a 4 bi. Write this
in the form c + di.

¢) On the basis of (6.27) and (6.28), guess the formula, and show that it
works.

6.5 Complex Functions

When one studies a function f from R to R, one often gets information by
looking at the graph of f, which is a subset of R x R. If we consider a function
g:C — C, the graph of ¢ is a subset of C x C = (R x R) x (R x R), and
C x C is a “4-dimensional” object which cannot be visualized. We will now
discuss a method to represent functions from C to C geometrically.
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Geometrical Representation of the Function f(z) = 22.

6.31 Example (f(z) = 22.) Let f: C — C be defined by f(z) = 2% Ifzis a
point in the circle C(0,r), then z = ru where u is a direction, and f(z) = r?u?
is a point in the circle C(0,7?) with radius 72. Thus f maps circles of radius
r about 0 into circles of radius r? about 0. Let ug be a direction in C. If z
is on the ray from 0 passing through ug, then z = ruy for some r € R" so
f(z) = r?u?, which is on the ray from 0 passing through u3. Hence the ray
making an angle # with the positive real axis gets mapped by f to the ray
making an angle 20 with the positive x-axis.

The left part of the figure shows a network formed by semicircles of radius

re{l,2.3,--,91}

and rays making angles

ee{o,il,i

2_7r 87r}
167167

4=
16

with the positive z-axis. The right part of the figure shows the network formed
by circles of radius
r?e {1%.2%...,.9% 1}

and rays making angles

T 27 8
20 +—- 4+— - +—
6{0’ 8 8"’ ’ 8}
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with the positive z-axis. f maps each semicircle in the left part of the figure
to a circle in the right part, and f maps each ray in the left part to a ray in the
right part. Also f maps each curvilinear rectangle on the left to a curvilinear
rectangle on the right. Notice that f(i) = f(—i), and in general f(z) = f(—2z),
so if we know how f maps points in the right half plane, we know how it maps
points in the left half plane. The function f maps the right half plane {z > 0}

onto C\ (( negative real axis ) U {0})

6.32 Definition (Image of a function.) Let S,T be sets, let f:S — T,
and let A be a subset of dom(f). We define

f(A)={f(a):a € A}
and we call f(A) the image of A under f. We call f (dom(f)) the image of f.

6.33 Example (f(z) = 22, continued) In the figure on page 118, the right
half of the figure is the image of the left half under the function f. The figure
on page 120, shows the image of a cat-shaped set under f. The cat on the left
lies in the first quadrant, so its square lies in the first two quadrants. The tip of

2 2
the right ear is 1 +1¢ = V2 (% + 2%), with length /2, and with direction

making an angle % with the positive real axis. The image of the right ear has

length (1/2)? = 2 and makes an angle g with the positive z-axis. You should

examine how the parts of the cat in each curvilinear rectangle on the left part
of the figure correspond to their images on the right part.
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The Square of a Cat

6.34 Exercise. Let C be the cat shown in the left part of the above figure.
Sketch the image of C under each of the functions g, h, k below:

a) g(z) =2z
b) h(z) =iz
c) k(z) =2iz

6.35 Exercise. Let C' be the cat shown in the left part of the above figure.
Sketch the image of C under G, where G(z) = —22.

6.36 Exercise. Let z be a direction in C; i.e., let z € C(0,1). Show that

2" = z71.
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1
6.37 Example. Let v(z) = — for all z € C\{0}. If z is in the circle of
z
.1 1
o . . rul |l ful |
so v takes points in the circle of radius » about 0 to points in the circle of

radius 7, then z = ru for some direction u, and |v(z)| =

1
radius — about 0.

”
Let ug be a direction. If z is in the ray from 0 through ug, then z = ru, for

1
some r € R*,s0ov(z) = ~uy' = ~uj. We noted earlier that u; is the reflection

of ug about the real axis, so v maps the ray making angle # with the positive
real axis into the ray making angle —f with the positive real axis. Thus v maps
the network of circles and lines in the left half of the figure into the network
on the right half.

The circular arcs in the left half of the figure have radii

re{5,.6,.7 - 14,15}

The Inverse of a Cat

Let’s see how v maps the vertical line x = a (a # 0), a € R. We know

1
that v(a) = — and v maps points in the upper half plane to points in the lower
half plane. Points far from the origin get mapped to points near to the origin.

: : . . : 1 .
I claim that v maps the line z = a into the circle with center 24 and radius
a
1
2lal’
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v maps vertical lines to circles

Let L, = {z:Re(z) = a} = {a + iy:y € R}, so L, is the set of points in
the line z = a. Then

z€L, < z=oa+1yforsomey e R
I 1 2a—2z 2a—(a+iy) a-—1y

z 20  2az  2a(a+iy)  2a(a+iy)

1 1) |1 a—iy| 1 Ja—dyl 1
z 2l |20 a+iy| |2a|l|a+iy]  |2al’
since |w| = |w*| for all w € C. Hence,
1 1 1 1 1 1
2€Ly = |-——|=— = ~€C|—,— |,
¢ z  2al  |2da z (2& |2a|>

1
and v maps every point in L, into C' (2—, m) . Now I claim that every point
a’ |2a

1 1
in C (2 , m) (except for 0) is equal to v(z) for some z € L,.
a’ 2a
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1 1
2’ [2d]

)0y

Since w = v (v(w)), it will be sufficient to show that if w € C (

then v(w) € L,. I want to show

1 1 1 .
(‘w—% =wandw#0) :>E=a—|—zyforsomey€R.
1 1 1 .
Well, suppose w——‘z—, and let — = A+ B where A, B € R. Then
2a|  |2a w
1 A—1iB
YT AviBT a2y By
1] 1 12 1
‘w—ﬁ—w = YT Taz
_ |A-iB 1P 1
A2 4+ B2 2q 4a?
— (2 _1)__£Lf_1_
A2+ B?  2a A? + B? 4a?
& A4 1 B
2+ B2 o+ B) A T (@ + By id
A%+ B? A
= (B2 A+ B
— A=a,
so (by definition of A)
1 1 1 .
‘w—— =— = — =a+iB where BER. |
2a a w

6.38 Exercise. The argument above does not apply to the vertical line
x = 0. Let Ly = {iy:y € R}. Where does the reciprocal function v map

Lo\{0}7

1
6.39 Entertainment. Let v(z) = — for all z € C\{0}. Show that v maps
z

horizontal lines y = ¢ (¢ # 0) into circles that pass through the origin. Sketch
the images of the lines

x = j, where j € {0,+£1,+2, £3}
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and the lines
y = j, where j € {0,+1,+2,4+3}

on one set of axes using a compass. If you've done this correctly, the circles
should intersect at right angles.

6.40 Exercise.

a) Sketch the image of the network of lines and circular arcs shown below
under the function g, where g(z) = 23 for all z € C.
i

0 e
b) Cube the cat in the picture.

6.41 Note. De Moivre’s formula (cos(f) + isin#)" = cos(nf) + isin(nd),
was first stated in this form by Euler in 1749 ([46, pp. 452-454]). Euler named
the formula after Abraham De Moivre (1667-1754) who never explicitly stated
the formula, but used its consequences several times ([46, pp. 440-450]).

The method for finding mth roots of complex numbers:

0 0
[7(cos @ + isin 0)]% = pm [cos — +isin —]
m m

was introduced by Euler in 1749 [46, pp.452-454)].

The idea of illustrating functions from the plane to the plane by distorting
cat faces is due to Vladimir Arnold (1937-77), and the figures are sometimes
called “Arnold Cats”. Usually Arnold cats have black faces and white eyes
and noses, as in [3, pp.6-9].



