Chapter 4

The Complexification of a Field.

Throughout this chapter, F will represent a field in which -1 is not a square. For example, in an ordered field -1 is not a square, but in \mathbb{Z}_5 , $(2)^2 = 4 = -1$ so -1 is a square. In \mathbb{Z}_3 ,

$$0^2 = 0$$
, $1^2 = 1$, $2^2 = 1$, and $-1 = 2$,

so -1 is not a square in \mathbb{Z}_3 .

Let F be a field in which -1 is not a square. I am going to construct a new field \mathbf{C}_F which contains (a copy of) F and a new element i such that $i^2 = -1$. The elements of \mathbf{C}_F will all have the form

$$a + bi$$

where a and b are in F. I'll call C_F the complexification of F. Before I start my construction, note that if a, b, c, d are in F and $i^2 = -1$, then by the usual field axioms

$$(a+bi) + (c+di) = (a+c) + (b+d)i, (4.1)$$

and

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i. (4.2)$$

4.1 Construction of C_F .

Let F be a field in which -1 is not a square. Let $\mathbf{C}_F = F \times F$ denote the Cartesian product of F with itself (Cf. definition 1.55). I define two

binary operations \oplus and \odot on \mathbf{C}_F as follows (cf. (4.1) and (4.2)): for all $(a,b),(c,d)\in\mathbf{C}_F$,

$$(a,b) \oplus (c,d) = (a+c,b+d)$$

and

$$(a, b) \odot (c, d) = (ac - bd, ad + bc).$$

We will now show that $(\mathbf{C}_F, \oplus, \odot)$ is a field.

4.3 Theorem (Associativity of \odot .) The operation \odot is associative on \mathbf{C}_F .

Proof: Let (a, b), (c, d) and (e, f) be elements in C_F . Then

$$(a,b) \odot ((c,d) \odot (e,f))$$

$$= (a,b) \cdot (ce - df, cf + de)$$

$$= (a(ce - df) - b(cf + de), a(cf + de) + b(ce - df))$$

$$= (ace - adf - bcf - bde, acf + ade + bce - bdf). \tag{4.4}$$

Also,

$$((a,b) \odot (c,d)) \odot (e,f)$$

$$= (ac - bd, ad + bc) \odot (e,f)$$

$$= ((ac - bd)e - (ad + bc)f, (ac - bd)f + (ad + bc)e)$$

$$= (ace - bde - adf - bcf, acf - bdf + ade + bce). \tag{4.5}$$

Now by using the field properties of F, we see that the (4.4) and (4.5) are equal, and hence

$$(a,b)\odot((c,d)\odot(e,f))=((a,b)\odot(c,d))\odot(e,f).$$

Hence, \odot is associative on \mathbf{C}_F .

I expect the multiplicative identity for C_F to be 1 + 0i = (1, 0).

4.6 Theorem (Multiplicative identity for C_F.) The element (1,0) is an identity for \odot on \mathbb{C}_F .

Proof: For all $(a, b) \in \mathbf{C}_F$, we have

$$(1,0) \odot (a,b) = (1 \cdot a - 0 \cdot b, 1 \cdot b + 0 \cdot a) = (a,b)$$

and

$$(a, b) \odot (1, 0) = (a \cdot 1 - b \cdot 0, a \cdot 0 + b \cdot 1) = (a, b).$$

4.1. CONSTRUCTION OF C_F .

85

4.7 Exercise.

- a) Show that \oplus is associative on \mathbf{C}_F .
- b) Show that there is an identity for \oplus on \mathbf{C}_F .
- c) Show that every element in C_F has an inverse for \oplus .
- d) Show that \odot is commutative on \mathbf{C}_F .
- e) Show that the distributive law holds for C_F .
- f) Show that the additive and multiplicative identities for C_F are different.

As a result of exercise 4.7 and the two previous theorems, we have verified that $(\mathbf{C}_F, \oplus, \odot)$ satisfies all of the field axioms except existence of multiplicative inverses. Note that up to this point we have never used the assumption that -1 is not a square in F.

4.8 Theorem (Existence of multiplicative inverses.) Let F be a field in which -1 is not a square and let (a, b) be an element in $\mathbf{C}_F \setminus \{(0, 0)\}$. Then (a, b) has an inverse for \odot .

Proof: Let $(a,b) \in \mathbf{C}_F \setminus \{(0,0)\}$. I want to find a point $(x,y) \in \mathbf{C}_F$ such that

$$(a, b) \odot (x, y) = (1, 0).$$

Since multiplication is commutative, this shows that $(x, y) \odot (a, b) = (1, 0)$ and hence that (x, y) is a multiplicative inverse for (a, b). I want

$$(ax - by, ay + bx) = (1,0),$$

so I want

$$bx + ay = 0 (4.9)$$

and

$$ax - by = 1. (4.10)$$

Multiply the first equation by b and the second by a to get

$$b^2x + aby = 0$$

$$a^2x - aby = a.$$

If we add these equations, we get

$$(a^2 + b^2)x = a. (4.11)$$

In the next lemma I'll show that if -1 is not a square then $a^2 + b^2 \neq 0$ for all $(a,b) \in \mathbf{C}_F \setminus \{(0,0)\}$, so by (4.11), $x = \frac{a}{a^2 + b^2}$. Now multiply (4.9) by a and (4.10) by -b to get

$$abx + a^2y = 0$$
$$-abx + b^2y = -b.$$

If we add these equations, we get

$$(a^2 + b^2)y = -b$$

so

$$y = \frac{-b}{a^2 + b^2}.$$

I've shown that if $(a, b) \odot (x, y) = (1, 0)$, then $(x, y) = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$. A direct calculation shows that this works:

$$(a,b)\odot\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)=\left(\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2},\frac{a(-b)+ba}{a^2+b^2}\right)=(1,0).$$

4.12 Remark. The above proof shows that for all $(a, b) \in \mathbb{C} \setminus \{(0, 0)\}$,

$$(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$

4.13 Lemma. Let F be a field in which -1 is not a square. Let (a, b) be an element in $\mathbb{C}_F \setminus \{(0, 0)\}$. Then $a^2 + b^2 \neq 0$.

Proof: Since $(a, b) \neq (0, 0)$, either $a \neq 0$ or $b \neq 0$.

Case 1: Suppose $a \neq 0$, then $a^2 \neq 0$, so

$$a^{2} + b^{2} = 0 \implies a^{2} \left(1 + \left(\frac{b}{a} \right)^{2} \right) = 0$$

$$\implies 1 + \left(\frac{b}{a} \right)^{2} = 0$$

$$\implies \left(\frac{b}{a} \right)^{2} = -1.$$

Since -1 is not a square in F, $a^2 + b^2 \neq 0$.

87

Case 2: Suppose $b \neq 0$. Repeat the argument of Case 1 with the roles of a and b interchanged. \parallel

We now have verified all of the field axioms so we know that C_F is a field. Hence we can calculate in C_F using all of the algebraic results that have been proved to hold in all fields.

4.14 Notation (i, \tilde{a}) Let F be a field in which -1 is not a square. We will denote the pair $(0,1) \in \mathbf{C}_F$ by i, and if $a \in F$ we will denote the pair $(a,0) \in \mathbf{C}_F$ by \tilde{a} .

We have $\tilde{0} = (0,0)$ is the additive identity for \mathbf{C}_F , and $\tilde{1} = (1,0)$ is the multiplicative identity for \mathbf{C}_F . If $a \in F$, then $-\tilde{a} = -(a,0) = (-a,0) = \widetilde{-a}$. Also

$$i^2 = (0,1) \odot (0,1) = (0-1,0) = (-1,0) = -\tilde{1},$$

so i is a square root of $-\tilde{1}$.

If $a, b \in F$, then

$$\tilde{a} \oplus (\tilde{b} \odot i) = (a, 0) \oplus ((b, 0) \odot (0, 1))$$

= $(a, 0) \oplus (0, b) = (a, b),$

and hence every element $(a, b) \in \mathbf{C}_F$ can be written in the form $\tilde{a} \oplus (\tilde{b} \odot i)$. We have

$$\tilde{a} \odot \tilde{b} = (a,0) \odot (b,0) = (ab,0) = \widetilde{ab}$$

 $\tilde{a} \oplus \tilde{b} = (a,0) \oplus (b,0) = (a+b,0) = \widetilde{a+b}.$

Hence \mathbf{C}_F contains a "copy of F". Each element a in F corresponds to a unique \tilde{a} in \mathbf{C}_F in such a way that addition in \mathbf{C}_F corresponds to addition in F and multiplication in \mathbf{C}_F corresponds to multiplication in F. We will henceforth drop the tildes, and we'll denote \oplus by + and \odot by \cdot as is usual in fields. Then every element in \mathbf{C}_F can be written uniquely as a+bi where $a,b\in F$ and $i^2=-1$.

We consider F to be a subset of \mathbf{C}_F . An element z=(a,b)=a+bi of \mathbf{C}_F is in F if and only if b=0. If $a,b,c,d\in F$, then

$$a + bi = c + di \iff (a, b) = (c, d) \iff a = c \text{ and } b = d.$$

4.15 Examples. I will find the square roots of 2i in $C_{\mathbf{Q}}$. Let $a, b \in \mathbf{Q}$. Then

$$(a+bi)^2 = 2i \iff a^2 - b^2 + 2abi = 2i$$

$$\iff a^2 - b^2 = 0 \text{ and } 2ab = 2$$

$$\iff a^2 = b^2 \text{ and } ab = 1$$

$$\iff (a = b \text{ and } ab = 1) \text{ or } (a = -b \text{ and } ab = 1).$$

Now

$$(a = b \text{ and } ab = 1) \iff (a = b \text{ and } a^2 = 1) \iff a + bi = \pm (1 + i)$$

and

$$(a = -b \text{ and } ab = 1) \implies -b^2 = 1 \implies b^2 = -1$$

which is impossible. The only possible square roots of 2i are $\pm(1+i)$. You can easily verify that these are square roots of 2i.

4.16 Example. I can solve the quadratic equation

$$z^2 - 4z + 4 - \frac{1}{2}i = 0 (4.17)$$

in $C_{\mathbf{Q}}$ by using the quadratic formula for $Az^2 + Bz + C = 0$.

 $B^2 - 4AC = 16 - 4\left(4 - \frac{1}{2}i\right) = 2i = (1+i)^2$ (by the previous example). Since $B^2 - 4AC$ is a square, the equation has the solution set

$$\left\{\frac{4+(1+i)}{2}, \frac{4-(1+i)}{2}\right\} = \left\{\frac{5}{2} + \frac{1}{2}i, \frac{3}{2} - \frac{1}{2}i\right\}.$$

4.18 Exercise. Check that $\frac{5}{2} + \frac{1}{2}i$ and $\frac{3}{2} - \frac{1}{2}i$ are solutions to (4.17).

4.19 Exercise.

- a) Write $\frac{1}{1-2i}$ in the form a+bi where $a,b \in \mathbf{Q}$.
- b) Find all solutions to

$$(1-2i)z^2 - 2z + 1 = 0$$

in $C_{\mathbf{Q}}$. (You may want to use the result of example 4.15.) Write your solutions in the form a + bi where $a, b \in \mathbf{Q}$.

89

4.20 Entertainment. We noted earlier that -1 is not a square in \mathbb{Z}_3 , so \mathbb{Z}_3 has a complexification, which is a field with 9 elements. Show that if z = 1 + i, then the 9 elements in $\mathbb{C}_{\mathbb{Z}_3}$ are

$$\{0, z, z^2, z^3, z^4, z^5, z^6, z^7, z^8\}.$$

Can you figure out before you make any calculations which of these elements is 1?

4.2 Complex Conjugate.

4.21 Definition (Complex conjugate.) Let F be a field in which -1 is not a square. Let z = (a, b) = a + bi be an element of \mathbf{C}_F . We define

$$z^* = (a, -b) = a - bi.$$

 z^* is called the *conjugate* of z.

The following remark will be needed somewhere in the proof of the next exercise.

4.22 Remark. If F is a field in which -1 is not a square, then $2 \neq 0$ in F, since

$$2 = 0 \implies 1 + 1 = 0$$

$$\implies -1 = 1$$

$$\implies -1 = 1^{2}$$

$$\implies -1 \text{ is a square }.$$

4.23 Exercise. Let F be a field in which -1 is not a square. Let $z, w \in \mathbf{C}_F$. Show that

- a) $(z+w)^* = z^* + w^*$.
- b) $(z \cdot w)^* = z^* \cdot w^*$.
- c) $\left(\frac{z}{w}\right)^* = \frac{z^*}{w^*}$ if $w \neq 0$.
- $d) z^* = 0 \iff z = 0.$

e) If
$$z = a + bi \in \mathbf{C}_F$$
, then $zz^* = a^2 + b^2 \in F$. If $z \neq 0$ then $zz^* \neq 0$.

f)
$$z^* = z \iff z \in F$$
.

g)
$$z^{**} = z$$
.

4.24 Example. The results of the previous exercise provide a way to write expressions of the form $\frac{z}{w}$ in the form a + bi. Write

$$\frac{z}{w} = \frac{z}{w} \cdot \frac{w^*}{w^*}$$

and calculate away. For example, in $C_{\mathbf{Q}}$, we have

$$\frac{2+i}{(3-i)(4+5i)} = \frac{(2+i)}{(3-i)(4+5i)} \cdot \frac{(3+i)(4-5i)}{(3+i)(4-5i)}$$

$$= \frac{(2+i)(17-11i)}{(3^2+1^2)(4^2+5^2)} = \frac{45-5i}{10\cdot 41} = \frac{5(9-i)}{5\cdot 82}$$

$$= \frac{9}{82} - \frac{1}{82}i.$$

4.25 Exercise. Write each of the following elements of $C_{\mathbf{Q}}$ in the form a+bi where $a, b \in \mathbf{Q}$.

a)
$$\frac{(4-2i)(1+2i)}{(1-3i)(-1+3i)}$$

b)
$$(1+i)^{10}$$

4.26 Note. The first appearance of complex numbers is in *Ars Magna* (1545) by Girolamo Cardano (1501-1576).

If it should be said, Divide 10 into two parts the product of which is 30 or 40, it is clear that this case is impossible. Nevertheless, we will work thus: \cdots [16, page 219].

He then proceeds to calculate that the parts are $5 + \sqrt{-15}$ and $5 - \sqrt{-15}$, and says

Putting aside the mental tortures involved, multiply $5 + \sqrt{-15}$ by $5 - \sqrt{-15}$ making 25 - (-15) which is +15. Hence this product is $40 \cdots$. So progresses arithmetic subtlety the end of which, as is said, is as refined as it is useless [16, page 219–220].

Around 1770, Euler wrote

144. All such expressions as $\sqrt{-1}$, $\sqrt{-2}$, $\sqrt{-3}$, $\sqrt{-4}$ &c are consequently impossible, or imaginary numbers, since they represent roots of negative quantities; and of such numbers we may truly assert that they are neither nothing nor greater than nothing, nor less than nothing; which necessarily constitutes them imaginary, or impossible.

145. But notwithstanding this, these numbers present themselves to the mind; they exist in our imagination, and we still have a sufficient idea of them; since we know that by $\sqrt{-4}$ is meant a number which, multiplied by itself, produces -4; for this reason also, nothing prevents us from making use of these imaginary numbers, and employing them in calculation. [20, p 43]

The use of the letter *i* to represent $\sqrt{-1}$ was introduced by Euler in 1777.[15, vol 2, p 128] Both Maple and Mathematica use I to denote $\sqrt{-1}$.

The first attempts to "justify" the complex numbers appear around 1800. The early descriptions were geometrical rather than algebraic. The algebraic construction of \mathbf{C}_F used in these notes follows the ideas described by William Hamilton circa 1835 [25, page 83].

You will often find the complex conjugate of z denoted by \overline{z} instead of z^* . The notion of complex conjugate seems to be due to Cauchy[45, page 26], who called a + bi and a - bi conjugates of each other.