Chapter 4

The Complexification of a Field.

Throughout this chapter, F' will represent a field in which —1 is not a square.
For example, in an ordered field —1 is not a square, but in Zs, (2)2 =4 = —1
so —1 is a square. In Zs,

0°=0, 12=1, 22=1, and —1=2,

so —1 is not a square in Zg.

Let F be a field in which —1 is not a square. I am going to construct a new
field Cr which contains (a copy of) F and a new element 7 such that > = —1.
The elements of Cr will all have the form

a—+ b

where ¢ and b are in F'. T'll call Cg the complexification of F'. Before I start
my construction, note that if a, b, ¢, d are in F and 72 = —1, then by the usual
field axioms

(a+bi)+ (c+di) = (a+c)+ (b+d)i, (4.1)

and
(a+ bi)(c+ di) = (ac — bd) + (ad + be)i. (4.2)

4.1 Construction of Cy.

Let F' be a field in which —1 is not a square. Let Cp = F x F' denote
the Cartesian product of F with itself (Cf. definition 1.55). I define two
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binary operations @ and ® on Cp as follows (cf. (4.1) and (4.2)): for all
(a,b),(c,d) € Cp,
(a,b) ® (¢,d) = (a+ ¢,b+d)

and
(a,b) ® (¢,d) = (ac — bd, ad + bc).

We will now show that (Cp, ®,®) is a field.

4.3 Theorem (Associativity of ©.) The operation ® is associative on
Cr.

Proof: Let (a,b), (c,d) and (e, f) be elements in Cp. Then
(a,0) © ((c;d) © (e, f))
= (a,b)- (ce —df,cf + de)
= (a(ce —df) — b(cf + de),a(cf + de) + b(ce — df))
= (ace — adf — bef — bde, acf + ade + bee — bdf). (4.4)
Also,
((a,0) © (¢,d)) @ (e, f)
= (ac—bd,ad+bc) © (e, f)

= ((ac = bd)e — (ad + bc) f, (ac — bd) f + (ad + bc)e)
= (ace — bde — adf — bef,acf — bdf + ade + bee). (4.5)

Now by using the field properties of F', we see that the (4.4) and (4.5) are
equal, and hence

(a,0) © ((¢,d) © (e, f)) = ((a,0) © (¢, d)) © (e, ).

Hence, ® is associative on Cp. ||
I expect the multiplicative identity for Cr to be 1+ 0i = (1,0).

4.6 Theorem (Multiplicative identity for Cr.) The element (1,0) is an
wdentity for ©® on Cg.

Proof: For all (a,b) € Cp, we have
(1L,0)®(a,b)=(1-a—=0-b,1-b+0-a) = (a,b)

and
(a,0) ©(1,0)=(a-1—-b-0,a-0+b-1) = (a,b). |
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4.7 Exercise.

a) Show that @ is associative on Cp.

b) Show that there is an identity for & on Cpg.

¢) Show that every element in Cr has an inverse for &@.

d

Show that ® is commutative on Cpg.

e) Show that the distributive law holds for Cg.

)
)
)
)
)
)

f) Show that the additive and multiplicative identities for Cr are different.

As a result of exercise 4.7 and the two previous theorems, we have verified
that (Cp, ®, ®) satisfies all of the field axioms except existence of multiplica-
tive inverses. Note that up to this point we have never used the assumption
that —1 is not a square in F'.

4.8 Theorem (Existence of multiplicative inverses.) Let F' be a field
in which —1 is not a square and let (a,b) be an element in Cp\{(0,0)}. Then
(a,b) has an inverse for ©.

Proof: Let (a,b) € Cr\{(0,0}. I want to find a point (z,y) € Cr such that
(a,0) © (z,y) = (1,0).

Since multiplication is commutative, this shows that (z,y)® (a,b) = (1,0) and
hence that (z,y) is a multiplicative inverse for (a,b). T want

(ax — by, ay + bx) = (1,0),
so I want
bx +ay =0 (4.9)
and
ax — by = 1. (4.10)
Multiply the first equation by b and the second by a to get
b’z + aby

o’z —aby = a.
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If we add these equations, we get

(a®> +b*)z = a. (4.11)
In the next lemma I'll show that if —1 is not a square then a? + b? # 0 for all
(a,b) € Cp\{(0,0)}, so by (4.11), z =
(4.10) by —b to get

prETE Now multiply (4.9) by a and
a

abr +d’y = 0

—abzr + b’y = —b.
If we add these equations, we get
(a®> +b*)y = —b
SO b
V= ap
I've shown that if (a,b) ® (z,y) = (1,0), then (z,y) = <a2 i s a2_+bb2), A

direct calculation shows that this works:

(a,b)@( « b >=< P a(—b)+ba>:(1’0)'m

a? + 0% a? +b? a? +02  a?+ b2 a?+b?
4.12 Remark. The above proof shows that for all (a,b) € C\ {(0,0)},

a —b
byt = .
(a,) <a2+b2’a2+b2>
4.13 Lemma. Let F be a field in which —1 is not a square. Let (a,b) be an
element in Cr\{(0,0)}. Then a?® + b*> # 0.

Proof: Since (a,b) # (0,0), either a # 0 or b # 0.
Case 1: Suppose a # 0, then a? # 0, so

2
A+ =0 = a2(1+<2>>20
2
_ 1+(9) 0
a

- (-

Since —1 is not a square in F, a® + b # 0.
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Case 2: Suppose b # 0. Repeat the argument of Case 1 with the roles of a
and b interchanged. ||

We now have verified all of the field axioms so we know that Cr is a field.
Hence we can calculate in Cr using all of the algebraic results that have been
proved to hold in all fields.

4.14 Notation (i,a) Let F' be a field in which —1 is not a square. We
will denote the pair (0,1) € Cp by 4, and if a € F we will denote the pair
(a,0) € Cp by a.

We have 0 = (0,0) is the additive identity for Cp, an
multiplicative identity for Cp. If a € F, then —a = —(a,0)
Also

(oW
” =
Il
—~
—_
ja)
~
—
n
-+
=
@

2 = (0,1) ®(0,1) = (0—1,0) = (—1,0) = —1,

so i is a square root of —1.
If a,b € F, then

ad® (bei)

~—~

a,0) @ ((b,0) ®(0,1))
(a" 0) ©® (Oa b) = (a: b)a

and hence every element (a,b) € Cp can be written in the form @ @ (b @ i).
We have

= (a,0)® (b,0) = (ab,0) = ab
= (a,0)® (b,0) = (a+b,0) =a+b.

=]

S O

©
D

=]

Hence Cp contains a “copy of F”. Each element a in F' corresponds to a
unique ¢ in Cp in such a way that addition in Cp corresponds to addition
in F' and multiplication in Cg corresponds to multiplication in F. We will
henceforth drop the tildes, and we’ll denote @& by + and ® by - as is usual
in fields. Then every element in Cr can be written uniquely as a + bi where
a,b € F and i2 = —1.

We consider F to be a subset of Cp. An element z = (a,b) = a + bi of Cp
isin F if and only if b =0. If a,b,c,d € F, then

a+bi=c+di < (a,b)=(c,d) <= a=candb=d.
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4.15 Examples. I will find the square roots of 2¢ in Cq. Let a,b € Q. Then

(a+bi)?=2i < a®—b*+ 2abi = 2i
< a®*—b*=0and 2ab =2
< ad*=b andab=1
<= (a=band ab=1) or (a = —b and ab = 1).

Now
(a=bandab=1) <= (a=banda®=1) < a+bi=+(1+1)

and
(a=-bandab=1) = -’ =1= b>=-1

which is impossible. The only possible square roots of 2i are £(1 + 7). You
can easily verify that these are square roots of 2.

4.16 Example. I can solve the quadratic equation
1
22—4z+4—§i:0 (4.17)

in Cq by using the quadratic formula for Az* + Bz + C = 0.

1
B? —4AC =16 — 4 (4 - 51’) = 2i = (1 +1)? (by the previous example). Since
B? — 4AC is a square, the equation has the solution set

{4+(1+¢) 4—(1+i)}:{§+%¢,g 1-}.

2 T 2 2 9

5 1 3 1
4.18 Exercise. Check that 5 + 51’ and 5 §i are solutions to (4.17).

4.19 Exercise.

in the form a + bi where a,b € Q.

1
a) Write 1

b) Find all solutions to
(1—-20)22 =22+1=0

in Cq. (You may want to use the result of example 4.15.) Write your
solutions in the form a + b7 where a,b € Q.
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4.20 Entertainment.  We noted earlier that —1 is not a square in Zg,
so Z3 has a complexification, which is a field with 9 elements. Show that if
z =1+ 1, then the 9 elements in Cg, are

{0,2,2%, 22, 2%, 2°, 25,27, 28).
Can you figure out before you make any calculations which of these elements
is 17
4.2 Complex Conjugate.

4.21 Definition (Complex conjugate.) Let F be a field in which —1 is
not a square. Let z = (a,b) = a + bi be an element of Cp. We define

z* = (a,—b) = a — bi.
z* is called the conjugate of z.

The following remark will be needed somewhere in the proof of the next
exercise.

4.22 Remark. If F'is a field in which —1 is not a square, then 2 # 0 in F,
since

2=0 = 141=0
= —1=1
= —-1=1°

—> —1is a square .

4.23 Exercise. Let F' be a field in which —1 is not a square. Let z,w € Cp.
Show that

a) (z4w)* = 2" +w*.

b) (z-w)* = 2z* - w*.
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e) If z =a+ bi € Cp, then 22* = a? + b* € F. If 2 # 0 then 2zz* # 0.

f) 2*=2 < z¢€F.

4.24 Example. The results of the previous exercise provide a way to write

expressions of the form — in the form a + bi. Write
w

*

w

z z
woow w*
and calculate away. For example, in Cq, we have

2+ B (2+14) (3+9)(4-59)

(B3—d)(4+5)  (3—i)(4+5i) (3+1)(4—5i)
(249)(17—-115) 45—-5i _ 5(9—1)
(32 +12)(42+52) 10-41  5-82
9 1.

R

4.25 Exercise. Write each of the following elements of Cq in the form a+b:
where a,b € Q.

) 4=20)0+2)
YV 130 (-1 + 30)

b) (14 4)!

4.26 Note. The first appearance of complex numbers is in Ars Magna
(1545) by Girolamo Cardano (1501-1576).

If it should be said, Divide 10 into two parts the product of which
is 30 or 40, it is clear that this case is impossible. Nevertheless, we
will work thus: - -- [16, page 219].

He then proceeds to calculate that the parts are 5+ +—15 and 5 — v/—15,
and says
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Putting aside the mental tortures involved, multiply 5 4+ v/—15 by
5 — v/—15 making 25 — (—15) which is +15. Hence this product
is 40 - --. So progresses arithmetic subtlety the end of which, as is
said, is as refined as it is useless [16, page 219-220].

Around 1770, Euler wrote

144. All such expressions as v/-1, v/-2, v/-3, /-4 &c are con-
sequently impossible, or imaginary numbers, since they represent
roots of negative quantities; and of such numbers we may truly
assert that they are neither nothing nor greater than nothing, nor
less than nothing; which necessarily constitutes them imaginary,
or impossible.

145. But notwithstanding this, these numbers present them-
selves to the mind; they exist in our imagination, and we still have
a sufficient idea of them; since we know that by /-4 is meant
a number which, multiplied by itself, produces —4; for this rea-
son also, nothing prevents us from making use of these imaginary
numbers, and employing them in calculation. [20, p 43|

The use of the letter 7 to represent \/—1 was introduced by Euler in
1777.[15, vol 2, p 128] Both Maple and Mathematica use I to denote v/—1.

The first attempts to “justify” the complex numbers appear around 1800.
The early descriptions were geometrical rather than algebraic. The algebraic
construction of Cr used in these notes follows the ideas described by William
Hamilton circa 1835 [25, page 83].

You will often find the complex conjugate of z denoted by Z instead of z*.
The notion of complex conjugate seems to be due to Cauchy[45, page 26], who
called a 4 b7 and a — bi conjugates of each other.



