Chapter 3

Induction and Integers

3.1 Natural Numbers and Induction

3.1 Definition (Inductive set.) Let F' be a field. A subset J of F is
inductive if it satisfies the two conditions:

i) 0 J.
ii) forallz € F, (r € J) = (z+1) € J).

3.2 Examples. Z,N and Q are inductive sets in Q. Every field is an
inductive subset of itself.
If J is an inductive subset of F', then

leJ since 0eJand1=0+1
2¢J since leJand2=1+1
3eJ since 2€Jand3=2+1,

etc. Hence every inductive set contains
{0,1,2,3,4,5,---}.
If J is an inductive subset of Zs, then
Zs ={0,1,2,3,4} C J C Zs
so the only inductive subset of Zy is Zjy itself. The set
(0213078 1
2°2°2°2 22

is an inductive subset in Q.
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3.3 Exercise. Which of the following subsets of Q are inductive?
A = The set of even numbers = {2n:n € Z}
B = {n + %: ne Z}
C = {z€Z:2>3}={3,4,5---}
D = {z€Z:2>-3}={-3,-2,—-1,--}
3.4 Exercise.

a) Find an inductive subset J of Q, such that J # Q and 2 e J.

b) Find an inductive subset K of Q, such that K # Z and % ¢ K.

3.5 Definition (Natural numbers in F.) Let F be a field, and let n € F.
Then n is a natural number in F if n is in every inductive subset of F'. The
set of all natural numbers in F' will be denoted by Ng.

3.6 Example. By the first example in 3.2, for every field F’
0 € Np,1 € Np,2€ Np,3€ Np,---.
IfF == Z5, NF - Z5.

3.7 Remark. By the definition of Nz, N is a subset of every inductive
subset of F', i.e.,

If n € Ng, and J is inductive, then n € J.

3.8 Theorem. Let F' be a field. Then the set Nr of natural numbers in F
s an inductive set.

Proof: Since 0 is in every inductive set, 0 € Ng. Let J be an inductive subset
of F'. Then for all n € F,

n€ Ny = n € J (by definition of Np)
= n+1¢€ J (since J is inductive) .

Hence

n € Nrp = (n+1 € J for every inductive subset J of F)

Hence N is inductive. ||
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3.9 Remark. We summarize the previous theorem and remark by saying
“Np is the smallest inductive subset of F.” N is an inductive set, and it’s a
subset of every other inductive set. You should expect that

NF:{Oa17273747'”}

7

(whatever “ --” might mean).

3.10 Theorem (Induction theorem.) Let F be a field, and let P be a
proposition form on Ng. Suppose that

P(0) is true . (3.11)
For alln € Np, (P(n) = P(n+1)) is true . (3.12)

Then P(n) is true for all n € Np.
Proof: Let P be a proposition form on N satisfying (3.11) and (3.12). Let
T = {n € Np: P(n) is true }.

I want to show that 7 is inductive. Well, 0 € T, by (3.11). Let n be any
element in F'.

Casel. neT:
ne€T = P(n)is true
= P(n+1) is true (by 3.12)
= n+leT.
Case 2. n¢ T:

If n¢ T, then n € T is false,so (n € T = n+1¢€T) is true.

Thus for all n € F,
nel = n+1eT.

This shows that T is inductive. Since every inductive set contains N, Np C T

i.e., for all n € Np, P(n) is true. ||

3.13 Theorem. Let F be a field, and let a,m be natural numbers in F.
Then a +m and a-m are in Np.
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Proof: Let P be the proposition form on Nz defined by
P(n) = “for all @ € Ng(a+n € Np)” for all n € N.
Then P(0) says “for all a € Np(a + 0 € Np)” which is true. For all n € Np,

P(n) = foralla € Np(a+n € Np)
= foralla € Np((a+n)+1 € Np) (since Np is inductive)
= foralla € Np(a+ (n+1) € Np)
= P(n+1).
By the induction theorem, P(n) is true for all n € Ng; i.e.,
for all n € Np( for all a € Np(a+n € Np)).
Now define a proposition form ) on Nz by
Q(n) = “for all a € Np(a-n € Np)” for all n € N.
Then Q(0) says “for all « € Np(a-0 € Np)” which is true. For all n € Np,

Q(n) = foralla € Np(a-n € Np)
= foralla € Np(a-n+a € Np) (a sum of things in Np is in Np)
= foralla € Np(a-(n+1) € Np)
= Q(n+1).
By the induction theorem, @(n) is true for all n € Ng; i.e.,
for all n € Np(for all a € Np(a-n € Np)). |
3.14 Theorem. Let F' be an ordered field. Then for allmn € Ng, we have
n=0o0rn>1.
Proof: Define a proposition form P on Ng by
P(n)=“n=0o0rn>1" for all n € Np.

Clearly P(0) is true. let n € Np. To show that P(n) = P(n + 1), I'll show
that n =0 = P(n+1) and that n > 1 = P(n+1). Well

n=0=n+1l=1=n+1>1= P(n+1)

and
n>1=n+1>141>1=n+1>1= P(n+1).

Hence P(n) = P(n+ 1), and by induction P(n) is true for all n € Np. ||
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3.15 Corollary. Let F be an ordered field. Then there is no element x € N
such that
0<zx<l.

3.16 Lemma. Let F' be an ordered field. Then
for alln € Np,(n—1 € Np orn=0) (3.17)
Proof: Define a proposition form P on Ny by
P(n) = “(n—1¢€ Np) or (n=0)" for all n € Np. (3.18)

Then P(0) is true. Let n € Ng. To show that P(n) = P(n + 1), I'll show
that (n —1 € Np) = P(n+1) and that (n =0) = P(n+1). Well,

(n-1eNp) = ((n—1)+1€Np) = ((n+1)-1€ Np) = P(n+1),
and
(n=0)= (n+1)-1=0) = ((n+1)—1€Np) = P(n+1).
Hence P(n) = P(n+ 1), and by induction, P(n) is true for all n € Np. ||
3.19 Theorem. Let F' be an ordered field and let p,k € Ng. Then
p—kéeNporp—£k<0.

Proof: For each p € Ny define a proposition form P, on Ny by

P,(n) =“p—n € Nporp—n<0” for all n € Np.

I'll show that for each p € N, P,(n) is true for all n € Np. Now P,(0) says
“p € Ng or p < 0” which is true, since p € Ngp. Now let n € Ng. To show
that P,(n) = P,(n + 1), I'll show that

p—n€Np = P,(n+1)

and that
p—n<0= P,(n+1).
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By the previous lemma

p—ne€Np = (p—n)—1€Nporp—n=0
— p—(n+1)eNporp—(n+1)=-1
= p—(n+1)eNporp—(n+1)<0
= P,(n+1).

Also
p—n<0 = (p—-n)-1<-1=p—-(n+1)<-1<0
= p—(n+1)<0
= P,(n+1).

This completes the proof that P,(n) = P,(n + 1), so by induction P,(n) is
true for all n € Np. ||

3.20 Corollary. Let F' be an ordered field, and let p,k € Ng. If p > £,
then p — k € Np.

3.21 Theorem. Let F' be an ordered field and let p € Ng. Then there is no
natural number k such that p < k < p+ 1. In other words,

for allk,p e Np(k>p = k>p+1).
Proof: Suppose
p<k<p+1. (3.22)

Then
0<k-p<l.

Since £k — p > 0, the previous theorem says £ — p € Ng. This contradicts
corollary 3.15, so (3.22) is false. ||

3.23 Theorem (Least Element Principle.) Let F be an ordered field.
Then every non-empty subset S of Np contains a least element, i.e. if S # (),
then there is some element k € S such that k < n for alln € S.

Proof: T will show that if S is a subset of Nz having no least element, then

S=0.
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Let S be a subset of Nz having no least element. For each n € Ny define
a proposition P(n) by

P(n)=“Forallk € S, (k >n)”.

Now 0 ¢ S, since if 0 were in S it would be a least element for S. Hence all
elements in S are greater than 0, and P(0) is true. Now let n be a generic
element of Ng. Then

P(n) = forallke S, (k>n)
= forallke S, (k>n+1)
= forallke S, (k>n+1)

since if n + 1 were in S, it would be a least element for S. Thus
P(n) = P(n+1),

and by induction, P(n) is true for all n € Ny. It follows that S = (), since if
S contained an element 7, then P(n) would say that n > n. ||

3.24 Exercise. Let F' be an ordered field. Show that there is a non-empty
subset S of F'* that has no smallest element, i.e. there is a set S C F'* such
that

for every a € S there is some b € S with b < «a.

3.25 Example. Let F' be an ordered field. Let P be the proposition form
on Ny defined by

P(n) = “n* > %(n2 +mn).” (3.26)

Then for all n € Ng
P(n) = n2>%(n2+n)

= n2+(2n+1)>%(n2+n)+(2n+1)

— (n+1)2>%(n2+n+4n+2)=%[(n2+2n+1)+(n+1)+2n]

:%[(n+1)2—|—(n+1)]—|—n2%[(n+1)2+(n—|—1)]
= (n+1)2>%((n+1)2+(n+1))
= P(n+1).
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Hence P(n) = P(n+1) for all n € Np. Now note:
P(0) says (0 > 0) so P(0) is false!
P(1) says (1 > 1) so P(1) is false!
P(2) says (4 > 3) so P(2) is true.
Since P(0) is false, I cannot apply the induction theorem. Notice that when

I prove P(n) = P(n+ 1) I do not assume that P(n) is true. (Although I
might as well, since I know P(n) = P(n + 1) is true if P(n) is false.)

3.27 Theorem (Induction theorem generalization.) Let F' be an or-
dered field. Let k € Ng and let P be a proposition form defined on
{n € Np:n > k}. Suppose

P(k) is true. (3.28)
Foralln € {n € Np:n >k} P(n) = P(n+1). (3.29)
Then P(n) is true for alln € {n € Ng:n > k}.
Proof: Let ) be the proposition form on Ny defined by
Q(n) =P(n+k) for all n € Np

(observe that n € Np = n+k € {n € Nr:n > k} so Q(n) is defined). Then
Q(0) = P(k), so Q(0) is true by (3.28). For all n € Np,
Q(n) < Pn+k) = P(n+k)+1)
& P(n+1)+k) <= Q(n+1)
SO
Q(n) = Q(n+1).

By the induction theorem, Q(n) is true for all n € Np; i.e., P(n+ k) is true
for all n € Ng. To complete the proof, I need to show that

{n+k:neNp}={neNp:n>k}.
It is clear that

{n+k:neNp}C{neNpn>~k}

To show the opposite inclusion, observe that if n € Nr and n > k, then
n = (n—k) + k, and by theorem 3.19, n — k € Np. |
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3.30 Example. Let F' be an ordered field, and let P be the proposition
form on Nz defined by

1
P(n) = “n*> > 5(712 +mn).”
In example 3.25, we showed that P(n) = P(n + 1) for all n € Ny and that
P(2) is true. Hence, by our generalized induction theorem we can conclude
that P(n) is true for all n € Np with n > 2.

3.31 Exercise. Let F' be a field and let z € Np. We say z is evenifx = 2-y
for some y € N, and we say x is odd if t =2 -z + 1 for some z € Np.

a) What are the even numbers in Z5?

b) What are the odd numbers in Z5?
3.32 Exercise.

a) Let F be a field. Prove that every element in N is either even or odd.
HINT: Let P(n) = “n is even or n is odd”.

b) Let F' be an ordered field. Prove that no element of Ny is both even
and odd. Why doesn’t this contradict the result of exercise 3.317

3.33 Note. The question of whether to consider 0 to be a natural number
is not settled. Some authors start the natural numbers at 0, other authors
start them at 1. It is interesting to note that Aristotle did not consider 1 to
be a number.

... for “one” signifies a measure of some plurality, and “a number”
signifies a measured plurality or a plurality of measures. Therefore,
it is also with good reason that unity is not a number; for neither
is a measure measures, but a measure is a principle, and so is unity
.... |5, page 237, N, 1, 1088a5]

Zero was first recognized to be a number around the ninth century. Ac-
cording to [31, page 185] Mahavira (ninth century) noted that any number
multiplied by zero produces zero, and any number divided by zero remains
unchanged! Bhaskara (1114-1185) said that a number divided by 0 is called
an infinite quantity.



64 CHAPTER 3. INDUCTION AND INTEGERS

Although arguments that are essentially arguments by induction appear in
Euclid, the first clear statement of the induction principle is usually credited to
Blaise Pascal (1623-1662) who used induction to prove properties of Pascal’s
Triangle.[36, page 73]

I believe that the idea of defining the natural numbers to be things that
are in every inductive set should be credited to Giuseppe Peano [37, page 94,
Axiom 9]. In 1889, Peano gave a set of axioms for natural numbers N (starting
with 1), one of which can be paraphrased as: If K is any set, such that 1 € K
and forallz € N, (r € K = z+1 € K), then N C K.

3.2 Integers and Rationals.

3.34 Definition (Integers in F.) Let F be a field. We define an element
z in F' to be an integer in F' if and only if z can be written as the difference
of two natural numbers; i.e., if and only if

z = q — p for some p,q € Np.
We denote the set of integers in F' by Zp.
3.35 Exercise. What are the integers in Zs5?
3.36 Exercise. Let F' be a field. Show that for all x,y € F',
r€Zpandy€Zyr = v+y€Zp

and that
r€Zrandy€Zpr = v -y € Zp.

Also show that x € Zp — —z € Zp.

3.37 Theorem. Let F' be an ordered field and let —Np = {—z:2 € Np}.

Then
ZF = NF U (—NF) and NF N (—NF) = {0}
Proof:
neENrp = n=n—-0€Zp
and

ne€—-Np = —n€Np = 0—(—n) €Zr = né€Zp.
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Hence, Np C Zr and —Ng C Zp, so
NpU(=Np) C Zp. (3.38)

Now suppose n € Zr. Then n = p — q where p,q € Np. If p—¢g > 0, then
p—q€Np. Ifp—qg<0,theng—p>0,50q¢—p € Np,s0 —(p—¢q) € Np, so
—n € Ng,so0n € —Np. Therefore, n € Nporn € —Ng;ie., n € NpU—Npg,
SO

Zp C NpU(—Np).

This combined with (3.38) shows that Zrp = Np U (—Npg). Since all ele-
ments of Nr are > 0, and all elements of —INp are < 0, it follows that
Nz N (—=Ng) C {0}, and clearly 0 € Np N —Npg, so Ng N (=Ng) = {0}. ||

3.39 Definition (Rational numbers in F.) Let F' be a field. Let

Qp = {%:n,mEZF andm;«é()}.

0
The elements of Q will be called rational numbersin F. We note 0 = 1 € Qp

1
andlZIEQF.

3.40 Theorem. Let F be a field. Then the set Qg of rational numbers in
F form a field (with the operations of F ).

Proof: The various commutative, associative and distributive laws hold in Q,
because they hold in F', and we’ve noted that the additive and multiplicative
identities of F' are in Qp, and they act as identities in Qg because they are

identities in F'. We note that 4+ and - define binary operations on Qp; i.e., the

r

sum and product of elements in Q is in Qp. Let a,b € Qg write a = Z—), b= -
q

s
where p,q,7,s € Zr and ¢ # 0, s # 0. Then

wib = Py opstar
q S qs
b T pr
a-b = 2. =22
g s gs
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and ps + qr, gs,pr are all in Zr and ¢-s # 0. Hence a + b and a - b are in Q.
Also, —a = — Pl = 2P where —p,q € Zp, s0 —a € Qp and
q q

b#0 — b:fwherer,s#o r,s € Zp
s
s

= b_lz—
T

= b 'leQqQ,.
Hence Q is a field. ||

3.41 Definition (Even and odd.) In exercise 3.31 we defined even and
odd natural numbers. We now extend this definition to integers. Let F' be a
field and let z € Zr. We say x is even if and only if z = 2y for some y € Zp,
and we say z is odd if and only if z = 2z + 1 for some z € Zp.

3.42 Remark. In exercise 3.32 you showed that in an ordered field, every
element of Ny is even or odd, and no element of Nz is both even and odd.
Since Zr = Np U —Np, it follows fairly easily that if F' is an ordered field,
then every element of Zy is even or odd, and no element of Zy is both even
and odd.

3.43 Exercise.
a) Let F be a field, and let n € Zp. Show that
nis even == n?is even,

and
nis odd = n?is odd.

b) Let F' be an ordered field and let n € Zp. Show that

n?iseven = n iseven
n?isodd = n isodd.

I want to show that in any ordered field F', 2 is not a square in Q. To
show this I will use the following lemma.
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3.44 Lemma. Let F be an ordered field. Then every element in Qp can be
written as T, where m,n € Zr and m,n are not both even.
n

Proof: Let F be an ordered field, and let » € Qg. Then r = ™ where
n

. -m .
m,n € Zr and n # 0. Since r = ——, we may assume without loss of general-
-n
ity that n > 0. Then n € Ny so we can write any element of Qj in the form

m
r=— where m € Zp, n € Nrp and n > 1. Let
n

Sz{quF: forsomepGZF<r:§>}.

Then n € S, since r = . By the least element principle, S has a least element
k. We have p
r=7 for some p € Zp.

Then p and k are not both even, since if p = 2P and k£ = 2K where P and K
are in Zg, then

p_ 2P P

k2K K’

and hence K € S. But this is impossible because K = %k < k,ie. K is less
than the least element for S. ||

3.45 Theorem. Let F' be an ordered field. Then 2 is not a square in Q.

Proof: Suppose there were an element r € Qj such that r?> = 2. By our

) m
lemma, we can write r = — where m,n € Zg, m,n not both even. Now
n

2
m

=2 = — =2
n

= m?=2-n?
= m is even (since n> € Zp).

Now
m is even = m = 2k for some k € Zp,
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SO

m? =2.n?
(2k)?2=2-n?
22k? = 2n?
2k? = n?

n? is even

FEEELY

n 1s even.

Thus the statement r? = 2 implies (m is even and n is even and m,n are not
both even), which is false. The theorem follows. ||

3.46 Note.
When Plato (4277-347B.C.) wrote The Laws, he lamented that most Greeks
at the time believed that all numbers were rational (i.e. that all lines are com-
mensurable):

ATHENIAN: My dear Cleinias, even I took a very long time to
discover mankind’s plight in this business; but when I did, I was
amazed, and could scarcely believe that human beings could suffer
from such swinish stupidity. I blushed not only for myself, but for
Greeks in general.

CLEINIAS: Why so? Go on, sir, tell us what you're getting at.

ATHENIAN: The real relationship between commensurables
and incommensurables. We must be very poor specimens if on
inspection we can’t tell them apart. These are the problems we
ought to keep on putting up to each other, in a competitive spirit,
when we’ve sufficient time to do them justice; and it’s a much more
civilized pastime for old men then draughts.

CLEINIAS: Perhaps so. Come to think of it, draughts is not
radically different from such studies.

ATHENIAN: Well, Cleinias, I maintain that these subjects are
what the younger generation should go in for. They do no harm,
and are not very difficult: they can be learnt in play, and so far
from harming the state, they’ll do it some good|[39, book vii,820].
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However, when Aristotle (384-322 BC) wrote the Priora Analytica, he as-
sumed that his reader was familiar with the proof of theorem 3.45 just given.
The following quotation would not be understood by anyone who did not know
that proof.

For all who effect an argument per impossible infer syllogistically
what is false, and prove the initial conclusion hypothetically when
something impossible results from the assumption of its contradic-
tory; e.g., that the diagonal of the square is incommensurate with
the side, because odd numbers are equal to evens if it is supposed
to be commensurate. One infers syllogistically that odd numbers
come out equal to evens, and one proves hypothetically the in-
commensurability of the diagonal since a falsehood results through
contradicting this.[4, 1-23, 41a, 23-31]

The meaning of the word “rational” has changed since the time of Euclid.
He would have said that a line of length /2 was rational, but a rectangle
of area /2 was irrational. The following quotation is from book X of The
FElements[19, vol 3, p10, definitions 3 and 4].

Let then the assigned straight line be called rational, and those
straight lines which are commensurable with it, whether in length
and in square or in square only, rational, but those which are in-
commensurable with it irrational.

4. And let the square on the assigned straight line be called
rational, and those areas which are commensurable with it rational,
but those which are incommensurable with it ¢rrational.

3.47 Warning. An early commentator on Euclid (quoted in [19, vol III
pagel|) suggested that perhaps

- everything irrational and formless is properly concealed,
and, if any soul should rashly invade this region of life and lay
it open, it would be carried away into the sea of becoming and be
overwhelmed by its unresting currents.

3.48 Notation (N, Z, Q.) We have defined natural numbers N in any field
F', and we’ve seen that the natural numbers in Z5 and the natural numbers in
Q are quite different. However, if F' is an ordered field, then

Nr=14{0,1,2,3,4,---}
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where the list contains no repetitions, since when we add a new term to the
list we get something greater than every element already in the list. Hence if
F, G are two ordered fields then Ny and Ng are “essentially the same”. We
will denote the natural numbers in an ordered field by N, and call N “the
natural numbers”. Since we defined Zy in terms of Ny, and we defined Qp in
terms of Zp, the integers in any two ordered fields are “essentially the same”
and the rationals in any two ordered fields are “essentially the same”. We will
denote the integers in any ordered field by Z, and call Z “the integers”.

Z=NU-N-={0,1,-1,2,-2,3,-3,---}.

Similarly we will call the rational numbers in an ordered field Q, and call Q
“the rational numbers”

Q:{%:n,mez, ,m;éO}.

3.49 Remark. One can define formally what it means to say Nz and Ng
are “essentially the same,” and one can prove that if F,G are ordered fields,
then N and Ng are “essentially the same” (e.g., see [35, page 35]).

However, one can also construct ordered fields F' and G such that Nz and
N are radically different! (see [41]) The reason that both of these apparently
contradictory things can happen is that our definition of N involves looking
at the set of all inductive subsets of F', and our vague notions of set and
function are just too imprecise to deal with this delicate question. The two
quoted contradictory results are proved using different set theories, which are
not consistent with each other, but both of which are more or less consistent
with everything we’ve used about sets.

3.3 Recursive Definitions.

Our definition of function f: A — B involved the undefined word “rule”. If I
define f:N — N by

fn)=2-n+1forallneN

the rule is perfectly clear. I will often want to define functions by “rules” of
the following sort: f: N — N is given by

f0)=1
{fgn)-i-l):(n—}-l)-f(n) for all n € N. (3.50)
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It is not quite so clear that this is a rule, since the right side of (3.50) involves
the function I am trying to define. However, if I try to use this rule to calculate

f(4), T get

f4) =

Il
N SO SO N

(3.51)

and by this example, you recognize that (3.50) defines the familiar factorial
function. In fact, I make this my definition of the factorial function.

3.52 Definition (Factorial function.) We define f: N — N by the rules.

{f(0)=1
f(n+1)=(n+1)- f(n) forallneN.

We call f the factorial function, and denote f(n) by n!. By definition,

ol=1
{(n—i—l)!:(n—i-l)-n!.

I could use the same rule (3.50) to define a factorial function Zs — Z;. The
calculation (3.51) shows that then

f4)=4-3-2.1-1=24=4,

and
f(B)=5-f(4)=5-4=0.

but in Z5, 5 = 0 so L have f(0) = 0, contradicting f(0) = 1. So I see that (3.50)
is not a “rule”. How do I know that (3.50) is a “rule” when considered as a
function from N — N7?; i.e., how do I know that no contradiction arises when
I use (3.50) to calculate values for n € N? I have decided not to worry about
this question, and to treat definitions analogous to (3.50) where functions on
N are defined by giving f(0) explicitly, and expressing f(n + 1) in terms of
n and f(k) for values of £ < n, as valid “rules”. Such defintions are called
definitions by recursion. A discussion of, and justification for definitions by
recursion can be found in [27].
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3.53 Definition (Powers.) Let F' be a field, and let a € F. Define a
function

fiNo F
by
f.(0) = 1.
fa(n+1) = fu(n)-afor allm € N. (3.54)
Thus,
fa(4) fa(3) -a
= fa(2) .a-a
= ful)-a-a-a
fa(0)-a-a-a-a

= l-a-a-a-a

= a-a-a-a.

We denote the value of f,(n) by a™. Then we can rewrite (3.54) as

{aozl
"l =q".q forallne N.

Note that 0° =1 and a! = a.
3.55 Theorem. Let F' be a field and let a € F'. Then for all p,n € N,
a?™ = aP - a".
Proof: Define a proposition form P on N by
P(n) = “for all p € N(a"*™ = a? - a")” for all n € N.

Then P(0) says “for all p € N(a?™® = a? - a°)” which is true, since both sides
of the equation are equal to a?. For all n € N,

aPtm . q = P+l — ap+(n+1)’

and
(aPa™) - a = P (a"a) = aPa™V).
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Hence for all n € N,

P(n) for all p € N(a?*" = a”a"™)
for all p € N((a""") - a = (a’a") - a)
for all p € N(ap+(n+1) = aPa"t)

P(n+1).

N

By induction, P(n) is true for all n € N, i.e.
for all n € N(for all p e N(a”*" = apa”)). I
3.56 Exercise. Let F' be a field, and let a, b be elements of F'. Show that
(ab)" = a"™b"™ for all n € N.
3.57 Exercise. Let F' be a field and let a € F'. Show that

(@)™ = o™ for all m,n € N.

The following results are easy to show and we will assume them.

0"t =0 for all n € N, ( but 0° = 1).
1" =1 for all » € N.
a#0 = (a"#0foralln € N).

3.58 Remark. Let F' be a field, let a € F\{0} and let n € Z. We know
that n = p — q where p,q € N. Suppose we also have n = P — () where
P,Q € N.

n=n — p—q=P—-Q = p+Q=q+P

= "¢ ="’ = ¢Pa® = a%a?
a? a®
a?  aQ’

I need this remark for the following definition to make sense.
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3.59 Definition (Integer powers.) Let F be a field. If a € F\{0} and
n € Z, we define

aP
a”zawheren:p—q, p,q € N.

Note that this definition of a=! is consistent with our use of a~! for multiplica-
tive inverse. Also, this definition implies that

1" =1for all n € Z.
3.60 Theorem. Let F' be a field and let a € F\{0}. Then
for allm,n€Z (a™™ =ad™-a").
Proof: Let m,n € Z, and write
m=p—¢q, n=r—swherep,qr,s€N

then p+r € N and ¢ +s € N and

g™t — a(pfq)+(rfs) :a(p—l—r)f(q—i—s)

a?t’" aPa”

adts ala’
ap a’r m n
TR I
3.61 Remark. If Fis a field, and a € F'\ {0}, then by definition 3.59 we
know that

P
al™1 = a_q for all p,q € N.
a

It follows from theorem 3.60 that a?a?~? = aP for all p,q € Z, and hence
aP
a’ 9= — for all p,q € Z.
al

3.62 Exercise. Let F be a field, and let a,b € F\{0}. Show that
(ab)™ = a™b" for all n € Z.

3.63 Corollary (to Exercise 3.62) Let F' be a field, and let a,b € F\ {0}.
Then

a\" a"
-) == Z.
(b) o for alln €
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Proof: By exercise 3.62

a’nn_ 2 n_ n
(5) b _(b b) =qa" for all n € Z.

If we multiply both sides of this equation by (b")~', we get

(%)n ()t = o (b") L,

(2) =
b) b

3.64 Exercise. Let I’ be a field, and let a € F\{0}. Show that

1.e.

(@™ = ™ for all m,n € Z.

3.4 Summation.
3.65 Notation (Z>;.) Let k£ € Z. We define
Zsy={n€Z:n>k}.

In particular Z>o = N.

p
3.66 Definition (> f(j)) Let k € Z and let f: Z>j, — F be a function from
j=k
Zs}, to a field F. Define a function S:Z>, — F by the rules

S(k) = f(k)
Sn+1) = Sn)+ f(n+1) for all n € Zyy.

Hence, for k = 2,

SG) = 8

I
)
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We denote S(p) by Z f(y) for all p € Z5. Thus,

> f5) = f(k) (3.67)

=k
and
n+1 n
> f0) (Z ) + f(n+1).
= ~
The letter j in (3.67) has no meaning, and can be replaced by any symbol that

has no meaning in the present context. Thus Z fQ Z flw
=

3.68 Example.

4
DiF = 0P+ 1P+ 22432442 =30

2333' (-3)+(-2)+ (1) +0+1+2+3=0.

j=—3

3.69 Remark. [ will sometimes write things like

LI N N N
~3—j 3-1 3-2 2 2

even though my definition of summation is not strictly applicable here (since

- is not defined for all j € Z»,).

There are many formulas associated with summation notation that are
easily proved by induction; e.g., let f, g be functions from Z, to an ordered
field F', and let ¢ € F'. Then

p p

YO+ 90) i (7)] for all p € Zy.

j=k j=k j=k
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p p
If f(j) > g(j) for all j € Z>y, then Zf(j) > Zg(j) for all p € Z5y.
=k

Jj=k

P

q P
Zf(]) = Zf(]) + Z f(j) for all ¢ € Z>y,p € Z>q41-
=k

Jj=k Jj=q+1

We will assume these results.

3.70 Remark. Usually induction arguments are presented less formally
than I have been presenting them. In the proof of the next theorem I will give
a more typical looking induction argument. (I personally find the more formal
version — where a proposition is actually named — easier to understand.)

3.71 Theorem (Finite geometric series.) Let F' be a field, and let
r € F\{1}. Then for alln € N,

1— ,,,n—f—l

R — 72
jgor 17 (3.72)

0
11—
Proof: (By induction.) When n = 0, (3.72) says » r/ = 1—T which is true
=0 -
since both sides are equal to 1. Now suppose that (3.72) is true for some

n € N. Then

n+1 ] n ) 1— rn—|—1
Sorl = S ittt = ————
3=0 §=0 L=
1— Tn—f—l + ’f’n+1(1 o 7") 1— ,r(n—l—l)—f-l
B 1—r B 1—r
SO
n+1 1— T(n+1)+1

Y=
= 1—r
Hence, if (3.72) holds for some n € N, it also holds when n is replaced by

n + 1. By induction (3.72) holds for all n € N. ||

3.73 Remark. I will sometimes denote Y f(j) by f(1)+ f(2)+---+ f(n).
j=1

I am not going to give a formal definition for - - -, and when you see - - - writ-

ten in these notes it is usually an indication that a straightforward induction

argument or a recursive definition is being omitted.
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3.74 Remark. The previous proof was easy, but in order to use the
induction proof, I needed to know the formula. Here I will indicate how one
might discover such a formula. For each n € N, let S5, = 14+7r+ ... 4+ r".
Then

(T+r+-4r")=Q+r+--+r")+ " =5, + " (3.75)

and
(Ttr+-+r")=1+r(l+r+--+7")=1+7S,.

Hence
Sy +r"tt=1+7r8,, (3.76)

and it follows that
Sp(l—=7r)=1—p"*

i.e. ——

1—r
Here I have derived the formula (3.72). If you write out the argument from line
(3.75) to line (3.76), without using - - -s, and using only properties of sums that
we have explicitly proved or assumed, you will probably be surprised at how
many implicit assumptions were made above. However all of the assumptions
can be justified in a straightforward way.

Sy =

3.77 Theorem (Factorization of a"™!' — r"*1.) Let F be a field, and let
a, r be elements of F'. Then for all n € N,

(@t ="t = (a—r) a7 (3.78)
=0
= (a—r)(a"+a" ' +a" 2P+ a4 "),

Proof: Let n € N. The formula (3.72) for a finite geometric series shows that

(1—r")=(1-r) irj for all r € F\ {1}. (3.79)

§=0
This formula also holds when r = 1, since then both sides of the equation are
equal to zero, so

(1—r")y=@1-7r)Y 1 forallreF. (3.80)

=0
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This proves our formula in the case a = 1. When a = 0, equation (3.78) says
~(1) = (=) 1"

which is true, so we will suppose that a # 0. Then by (3.80) we have

gt — gl = gl (1-(2)”“)
e DEQ 0D (o)

n n

= (a—r)za—ﬂ (a—r Za” Ird ||

=0 @

3.81 Remark. The solution to the problem of “factoring” an expression
depends on the field over which we are working. For example, if we work over
Z;, then

2’ +5=(z+3)(z+4),

whereas if F' is an ordered field, then 22 + 5 does not factor in the form
(z+a)(x+0b), where a and barein F. (If 22+5 = (x +a)(z+0b) forallz € F,
then by taking x = —a we would get a?+ 5 = 0, which is false since a? +5 > 0
in any ordered field.)

3.82 Exercise. Factor five of the following expressions into at least two
factors. Assume that all numbers appearing in your factorization are rational.

r? — 1. (Here p € Z>,.)

a’ + b3.

x5 — 5.

)
)
)
d) a* + b
)
)
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3.83 Entertainment. Let F' be a field and let » € F\{1}. For all n € Z>,
let

n
To=r+2r*4+3r°+---+n-r"=> jr.
j=1

By looking at T, .1 — r - T, and using the known formula (3.72), derive the

formula ,

T, = 5 (1 +nr"tt — (n+ 1)7’") .

(1—r)
3.84 Exercise. Let
n 1
Sy = — for all n € Z~,. 3.85
jz::l 3G +1) =t (3:85)

Calculate the values for Si, S, S3,54. Write your answers as fractions in the
simplest form you can. Then guess a formula for S,,, and prove that it is valid
foralln € Z>,.

3.86 Exercise. Let

T, =Y (2j—1) for all n € Zs;. (3.87)
j=1

Calculate the values for 71,75, 75, and T;. Then guess a formula for 7;,, and
prove that your guess is correct.
3.5 Maximum Function

3.88 Definition (max(p,q).) Let F be an ordered field, and let p,q € F.
We define

_[p ifp>gq
maX(p,Q)—{q itp<q
Then
p < max(p,q)
¢ < max(p,q).



3.5. MAXIMUM FUNCTION 81

3.89 Definition (Igaiclf(n).) Let F be an ordered field, let j € Z and let
j<n<
f:Z>; — F be a function. Define M:Z; — F by the rules

M(j) = f0)
M(n+1) = max(f(n+1),M(n)) foralln € Z,.

Hence, e.g., if f(n) = (n —1)?,

M(0) = f(0)=1

M(1) = max(f(1),M(0)) = max(0,1) =
M(2) = max(f(2),M(1)) =max(1,1) =
M(3) = max(f(3),M(2)) =max(4,1) =

We write
M(l) = max f(m)

j<m<l

where m is a dummy index, and we think of M (1) as the largest of the numbers
{f(G), fG+1),---, f(1)}. By definition

max_f(m) = f(7)
Jsmsj

and
emSip e (f(j - 1)’j<r%}<(lf(m)> '
3.90 Notation (Z;<,<;.) Let j,l € Z with j <. Then
Zicna={neZ:j<n<l}

3.91 Theorem. Let F' be an ordered field, let j € Z and let f:Z>; — F be
a function. Then for alll € Z>;,

for allp € Zj<p<i, f(p) < max f(m). (3.92)

T j<m<l

Proof: Let P be the proposition form on Zs; such that P(l) is the proposition
(3.92). Then P(j) says

for all p € Zj<im<j, f(p) < ez f(m);
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ie.,
for all p € {7}, f(p) < f(4)-
Hence P(j) is true.
Now for all [ € Z,

P(l) = forall p € Zjcna, f(p) < max f(m)
- jsms

— forall p € Zjcpuay, f(p) < max (f(l +1), max f(m ))

- jg%%ﬁ—l f(m).

We also have

f(l+1) < max (f(l+1), max f(m )) = max f(m),

j<m<l j<m<I+1
S0
P(l) = forallp€ ZjcuaqU{l+1}, f(p) < <m2(+1f( m)
= forall j € Zjcm<ir1, f(p) < jSI}lnigH
= P(l+1).

By induction, P(l) is true for all I € Z5;. ||

3.93 Note. The notation a” for positive integer powers of a was introduced
by Descartes in 1637[15, vol 1,p 346]. Both Maple and Mathematica denote
a™ by a"n.

The notation n! for the factorial of n was introduced by Christian Kramp
in 1808[15, vol 2, p 66].

The use of the Greek letter ¥ to denote sums was introduced by Euler in
1755[15, vol 2,p 61]. Euler writes
3 2

X X T
2= T T
T=3"37%

The use of limits on sums was introduced by Augustin Cauchy(1789 1857)
Cauchy used the notation Z fr to denote what we would write as Z f(r
vol 2, p 61].

In Maple, the value of Z f (i) is denoted by sum(f(i),i=1..n) . In Math-

r=—m

ematica it is denoted by Sum [£[i],{i,1,n}]



