Appendix A

Associativity and Distributivity of Operations in \mathbb{Z}_n

Let $n \in \mathbf{Z}$ satisfy $n \geq 2$. Let $\mathbf{Z}_n = \{x \in \mathbf{N}: x < n\}$. Let \oplus_n and \odot_n be the binary operations on \mathbf{Z}_n defined by

 $a \oplus_n b =$ remainder when a + b is divided by n, $a \odot_n b =$ remainder when ab is divided by n.

Thus for all $a, b \in \mathbf{Z}_n$,

$$a + b = r \cdot n + (a \oplus_n b) \text{ for some } r \in \mathbf{N}.$$
 (A.1)

$$a \cdot b = s \cdot n + (a \odot_n b)$$
 for some $s \in \mathbb{N}$. (A.2)

We will show that \bigoplus_n and \bigcirc_n are associative by using the usual properties of addition and multiplication on \mathbf{Z} .

A.3 Lemma. Let $x, y \in \mathbf{Z}_n$, $q, r \in \mathbf{Z}$. If nq + x = nr + y, then x = y and q = r.

Proof:

Case 1. Suppose $y \leq x$. Then by our assumptions,

$$x - y = n(r - q)$$

and

$$0 < x - y < x < n \cdot 1.$$

So

$$0 \le n(r - q) < n \cdot 1.$$

Since n > 0, it follows that $0 \le r - q < 1$ and since r - q is an integer r - q = 0, so r = q. Then x - y = 0, so x = y.

Case 2. If y > x, use Case 1 with y and x interchanged.

A.4 Theorem. \bigoplus_n is associative on \mathbb{Z}_n .

Proof: Let $a, b, c \in \mathbf{Z}_n$. Then

$$a + b = n \cdot t + (a \oplus_n b) \text{ for some } t \in \mathbf{Z}.$$
 (A.5)

$$b + c = n \cdot r + (b \oplus_n c) \text{ for some } r \in \mathbf{Z}.$$
 (A.6)

$$(a \oplus_n b) + c = n \cdot s + ((a \oplus_n b) \oplus_n c)$$
 for some $s \in \mathbf{Z}$. (A.7)

$$a + (b \oplus_n c) = n \cdot w + (a \oplus_n (b \oplus_n c)) \text{ for some } w \in \mathbf{Z}.$$
 (A.8)

By adding c to both sides of (A.5), we get

$$(a+b) + c = nt + ((a \oplus_n b) + c),$$
 (A.9)

and by adding a to both sides of (A.6), we get

$$a + (b + c) = nr + (a + (b \oplus_n c)).$$
 (A.10)

Replace $(a \oplus_n b) + c$ in (A.9) by its value from (A.7) to get

$$(a+b)+c=n(s+t)+((a\oplus_n b)\oplus_n c)$$
(A.11)

and replace $a + (b \oplus_n c)$ in (A.10) by its value from (A.8) to get

$$a + (b+c) = n(r+w) + (a \oplus_n (b \oplus_n c))$$
(A.12)

By (A.11) and (A.12) and the associative law in \mathbb{Z} ,

$$n(s+t) + ((a \oplus_n b) \oplus_n c) = n(r+w) + (a \oplus_n (b \oplus_n c)).$$

the associativity of \bigoplus_n follows from lemma (A.3).

A.13 Theorem. \odot_n is associative on \mathbf{Z}_n .

Proof: The proof is nearly identical with the proof that \oplus_n is associative.

A.14 Theorem. The distributive law holds in \mathbb{Z}_n ; i.e., for all $a, b, c \in \mathbb{Z}_n$,

$$a \odot_n (b \oplus_n c) = (a \odot_n b) \oplus_n (a \odot_n c).$$

Proof: We have

$$b + c = n \cdot t + (b \oplus_n c) \text{ for some } t \in \mathbf{Z}.$$
 (A.15)

$$a \cdot (b \oplus_n c) = n \cdot s + (a \odot_n (b \oplus_n c)) \text{ for some } s \in \mathbf{Z}.$$
 (A.16)

$$a \cdot b = n \cdot u + (a \odot_n b)$$
 for some $u \in \mathbf{Z}$. (A.17)

$$a \cdot c = n \cdot v + (a \odot_n c) \text{ for some } v \in \mathbf{Z}.$$
 (A.18)

Multiply both sides of (A.15) by a to get

$$a \cdot (b+c) = n \cdot at + a \cdot (b \oplus_n c). \tag{A.19}$$

Replace $a \cdot (b \oplus_n c)$ in (A.19) by its value from (A.16) to get

$$a \cdot (b+c) = n(at+s) + (a \odot_n (b \oplus_n c)). \tag{A.20}$$

Now add equations (A.17) and (A.18) to get

$$a \cdot b + a \cdot c = n \cdot (u + v) + ((a \odot_n b) + (a \odot_n c)). \tag{A.21}$$

We know that for some $w \in \mathbf{Z}$,

$$(a \odot_n b) + (a \odot_n c) = n \cdot w + ((a \odot_n b) \oplus_n (a \odot_n c)),$$

and if we substitute this into (A.21), we obtain

$$a \cdot b + a \cdot c = n(u + v + w) + ((a \odot_n b) \oplus_n (a \odot_n c)). \tag{A.22}$$

From (A.20) and (A.22) and the distributive law in **Z**, we conclude

$$n(at+s) + (a \odot_n (b \oplus_n c)) = n(u+v+w) + ((a \odot_n b) \oplus_n (a \odot_n c)).$$

The distributive law follows from lemma A.3.