
Chapter 14

The Inverse Function Theorem

14.1 The Intermediate Value Property

14.1 Assumption (Intermediate value property 1.) Let a, b be real
numbers with a < b, and let f be a continuous function from [a, b] to R such
that f(a) < 0 and f(b) > 0. Then there is some number c ∈ (a, b) such that
f(c) = 0.

(c,f(c))

(b,f(b))

(a,f(a))

The intermediate value theorem was first proved in 1817 by Bernard Bolzano
(1781–1848). However Bolzano published his proof in a rather obscure Bo-
hemian journal, and his work did not become well known until much later.
Before the nineteenth century the theorem was often assumed implicitly, i.e.
it was used without stating that it was an assumption.

287



288 CHAPTER 14. THE INVERSE FUNCTION THEOREM

14.2 Definition (c is between a and b.) Let a, b and c be real numbers
with a 6= b. We say that c is between a and b if either a < c < b or b < c < a.

14.3 Corollary (Intermediate value property 2.) Let f be a continuous
function from some interval [a, b] to R, such that f(a) and f(b) have opposite
signs. Then there is some number c between a and b such that f(c) = 0.

Proof: If f(a) < 0 < f(b) the result follows from assumption 14.1. Suppose
that f(b) < 0 < f(a). Let g(x) = −f(x) for all x ∈ [a, b]. then g is a
continuous function on [a, b] and g(a) < 0 < g(b). It follows that there is a
number c ∈ (a, b) such that g(c) = 0, and then f(c) = −g(c) = 0. |||
14.4 Corollary (Intermediate value property 3.) Let a, b be real num-

bers with a < b, and let f : [a, b] → R be a continuous function such that
f(a) 6= f(b). Let p be any number between f(a) and f(b). Then there is a
number c ∈ (a, b) such that f(c) = p.

14.5 Exercise. Prove Corollary 14.4. You may assume that f(a) < f(b).

14.2 Applications

14.6 Example. We know that ln is continuous on R+, and that ln(2) ≤ 1
≤ ln(4).(Cf equation (5.78).) It follows that there is a number e in [2, 4] such
that ln(e) = 1.

14.7 Example. Two points P,Q on a sphere are called antipodal points
if P and Q are opposite ends of the same diameter of the sphere. We will
consider the surface of the earth to be a sphere of radius R. At any fixed time,
let T (p) denote the temperature of the earth at the point p on the surface of
the earth. (More precisely, let T (p) be the number such that the temperature
at p is T (p)◦C). We will show that there are two antipodal points P, Q on the
surface of the earth such that T (P ) = T (Q). In fact, we will show that there
are two antipodal points on the equator with the same temperature. We first
introduce a coordinate system so that the center of the earth is at the origin,
and the plane of the equator is the x-y plane, and the point on the equator
passing through the Greenwich meridian is the point (R, 0). Then the points
on the equator are the points

(R cos(θ), R sin(θ)) where θ ∈ R.
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Define a function f : [0, π] → R by

f(θ) = T (R cos(θ), R sin(θ))− T (−R cos(θ),−R sin(θ)).

Thus
f(0) = T (R, 0)− T (−R, 0).

We suppose that f is a continuous function on [0, π]. If f(0) = 0 then
T (R, 0) = T (−R, 0), so (R, 0) and (−R, 0) are a pair of antipodal points
with the same temperature. Now

f(π) = T (−R, 0)− T (R, 0) = −f(0),

so if f(0) 6= 0 then f(0) and f(π) have opposite signs. Hence by the in-
termediate value property, there is a number c ∈ (0, π) such that f(c) = 0,
i.e.

T (R cos(c), R sin(c)) = T (−R cos(c),−R sin(c)).

Then (R cos(c), R(sin(c)) and (−R cos(c),−R(sin(c)) are a pair of antipodal
points with the same temperature. |||
14.8 Example. Let

P = a0 + a1X + a2X
2 + a3X

3

where a0, a1, a2, and a3 are real numbers, and a3 6= 0. Then there exists some
number r ∈ R such that P (r) = 0.
Proof: I will suppose that P (t) 6= 0 for all t ∈ R and derive a contradiction.
Let

Q(x) =
P (x)

P (−x)
for all x ∈ R.

Since P (x) 6= 0 for all x ∈ R, Q is continuous on R. We know that

lim{Q(n)} = lim{a0 + a1n + a2n
2 + a3n

3

a0 − a1n + a2n2 − a3n3
}

= lim

{
a0

n3 + a1

n2 + a2

n
+ a3

a0

n3 − a1

n2 + a2

n
− a3

}
= −1.

Hence Q(N) < 0 for some N ∈ Z+. Then P (N) and P (−N) have opposite
signs, so by the intermediate value property there is a number r ∈ [−N,N ]
such that P (r) = 0. This contradicts our assumption that P (t) 6= 0 for all
t ∈ R. |||
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14.9 Exercise. Let p(x) = x3 − 3x + 1. Show that there are at least three
different numbers a, b, c such that p(a) = p(b) = p(c) = 0.

14.10 Exercise. Three wires AC,BC, DC are joined at a common point
C.

A

C

B

D

Let S be the Y-shaped figure formed by the three wires. Prove that at any
time there are two points in S with the same temperature.

14.11 Exercise. Six wires are joined to form the figure F shown in the
diagram.

C

A

D
B

Show that at any time there are three points in F that have the same tem-
perature. To simplify the problem, you may assume that the temperatures at
A,B, C, and D are all distinct.

14.3 Inverse Functions

14.12 Definition (Injective.) Let A and B be sets. A function f : A → B
is called injective or one-to-one if and only if for all points a, b in A

(a 6= b) =⇒ (f(a) 6= f(b)),
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or equivalently if and only if

(f(a) = f(b)) =⇒ (a = b).

If f is a function whose domain and codomain are subsets of R then f is
injective if and only if each horizontal line intersects the graph of f at most
once.

ba

a 6= b, f(a) = f(b), f is not injective

14.13 Examples. Let f : [0,∞) → R and g : R → R be defined by

f(x) = x2 for all x ∈ [0,∞)

g(x) = x2 for all x ∈ (−∞,∞).

Then f is injective, since for all x, y ∈ [0,∞) we have x + y > 0, and hence

(
x2 = y2

)
=⇒

(
x2 − y2 = 0

)
=⇒

(
(x− y)(x + y) = 0

)
=⇒

(
x = y

)
.

However g is not injective, since g(−1) = g(1).

14.14 Remark (Strictly monotonic functions are injective.) If h is
strictly increasing on an interval J , then h is injective on J , since for all
x, y ∈ J

x 6= y =⇒ ((x < y) or (y < x))

=⇒ ((h(x) < h(y)) or ((h(y) < h(x))

=⇒ h(x) 6= h(y).

Similarly, any strictly decreasing function on J is injective.
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14.15 Definition (Surjective.) Let A, B be sets and let f : A → B. We
say that f is surjective if and only if B = image(f), i.e. if and only if for every
b ∈ B there is at least one element a of A such that f(a) = b.

14.16 Examples. Let f : R → R and g : R → [0,∞) be defined by

f(x) = x2 for all x ∈ (−∞,∞)

g(x) = x2 for all x ∈ [0,∞).

Then g is surjective, since if x ∈ [0,∞), then x = g(
√

x), but f is not surjective,
since −1 is not in the image of f .

14.17 Exercise. Give examples of functions with the following properties,
or else show that no such functions exist.

f : R → R, f is injective and surjective.
g : R → R, g is injective but not surjective.
h : R → R, h is surjective but not injective.
k : R → R, k is neither injective nor surjective.

14.18 Definition (Bijective.) Let A,B be sets. A function f : A → B is
called bijective if and only if f is both injective and surjective.

14.19 Examples. If f : [0,∞) → [0,∞) is defined by

f(x) = x2 for all x ∈ [0,∞),

then f is bijective.

The function ln is a bijective function from R+ to R. We know that ln is
strictly increasing, and hence is injective. If y is any real number we know that
ln takes on values greater than y, and values less that y, so by the intermediate
value property (here we use the fact that ln is continuous) it also takes on the
value y, i.e. ln is surjective.

14.20 Remark. Let A and B be sets, and let f : A → B be a bijective
function. Let b be a generic element of B. Since f is surjective, there is an
element a in A such that f(a) = b. Since f is injective this element a is unique,
i.e. if a and c are elements of A then

(
f(a) = b and f(c) = b

)
=⇒

(
f(a) = f(c)

)
=⇒

(
a = c

)
.
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Hence we can define a function g : B → A by the rule

g(b) = the unique element a ∈ A such that f(a) = b.

Then by definition
f(g(b)) = b for all b ∈ B.

Now let a ∈ A, so that f(a) ∈ B. It is clear that the unique element s in A
such that f(s) = f(a) is s = a, and hence

g(f(a)) = a for all a ∈ A.

14.21 Definition (Inverse function.) Let A,B be sets, and let f : A → B.
An inverse function for f is a function g : B → A such that

(
f(g(b)) = b for all b ∈ B

)
and

(
g(f(a)) = a for all a ∈ A

)
.

14.22 Remark (Bijective functions have inverses.) Notice that in the
definition of inverse functions, both the domain and the codomain of f enter
in a crucial way. It is clear that if g is an inverse function for f , then f is
an inverse function for g. Remark 14.20 shows that every bijective function
f : A → B has an inverse.

14.23 Example. Let f : [0,∞) be defined by

f(x) = x2 for all x ∈ [0,∞).

We saw above that f is bijective, and hence has an inverse. If

g(x) =
√

x for all x ∈ [0,∞)

Then it is clear that g is an inverse function for f .
We also saw that ln : R+ → R is bijective, and so it has an inverse. This

inverse is not expressible in terms of any functions we have discussed. We will
give it a name.

14.24 Definition (E(x).) Let E denote the inverse of the logarithm func-
tion. Thus E is a function from R to R+, and it satisfies the conditions

ln(E(x)) = x for all x ∈ R,

E(ln(x)) = x for all x ∈ R+.

We will investigate the properties of E after we have proved a few general
properties of inverse functions.
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In order to speak of the inverse of a function, as we did in the last definition,
we should note that inverses are unique.

14.25 Theorem (Uniqueness of inverses.) Let A,B be sets and let
f : A → B. If g and h are inverse functions for f , then g = h.

Proof: If g and h are inverse functions for f then

dom(g) = dom(h) = codomain(f) = B,

and
codomain(g) = codomain(h) = dom(f) = A.

Also for all x ∈ B
h(x) = g(f(h(x))) = g(x).

(I have used the facts that y = g(f(y)) for all y ∈ A, and f(h(x)) = x for all
x ∈ B).

14.26 Theorem (Reflection theorem.) Let f : A → B be a function
which has an inverse function g : B → A. Then for all (a, b) ∈ A×B

(a, b) ∈ graph(f) ⇐⇒ (b, a) ∈ graph(g).

Proof: Let f : A → B be a function that has an inverse function g : B → A.
Then for all (a, b) ∈ A×B

(
b = f(a)

)
=⇒

(
g(b) = g(f(a)) = a

)
=⇒

(
g(b) = a

)

and (
g(b) = a

)
=⇒

(
b = (f(g(b)) = f(a)

)
=⇒

(
b = f(a)

)
.

Thus (
b = f(a)

)
⇐⇒

(
a = g(b)

)
.

Now (
b = f(a)

)
⇐⇒

(
(a, b) ∈ graph(f)

)
,

and (
a = g(b)

)
⇐⇒

(
(b, a) ∈ graph(g)

)
,

and the theorem now follows. |||
Remark: If f is a bijective function with dom(f) ⊂ R and codomain(f) ⊂ R
Then the reflection theorem says that if g is the inverse function for f , then
graph(g) = D+(graph(f)) where D+ is the reflection about the line y = x.
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graph

graph
(b,a)

(g)

(f)

(a,b)

Since we know what the graph of ln looks like, we can make a reasonable
sketch of graph(E).

(1,e)

(e,1)E

ln

graph(  )

graph(   )

It is a standard notation to denote the inverse of a function f by f−1.

However since this is also a standard notation for the function
1

f
which is an

entirely different object, I will not use this notation.

We have shown that if f : A → B is bijective, then f has an inverse
function. The converse is also true.

14.27 Theorem. Let A, B be sets and let f : A → B. If f has an inverse
function, then f is both injective and surjective.

Proof: Suppose f has an inverse function g : B → A. Then for all s, t in A
we have

(
f(s) = f(t)

)
=⇒

(
g(f(s)) = g(f(t))

)
=⇒

(
s = t

)
(14.28)
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and hence f is injective. Also, for each b ∈ B

b = f(g(b)),

so b ∈ image(f), and f is surjective. |||

14.4 The Exponential Function

14.29 Example. We will now derive some properties of the inverse function
E of the logarithm.

We have

ln(1) = 0 =⇒ E(0) = 1,

ln(e) = 1 =⇒ E(1) = e.

For all a and b in R,

a + b = ln(E(a)) + ln(E(b)) = ln(E(a)E(b)).

If we apply E to both sides of this equality we get

E(a + b) = E(a)E(b) for all a, b ∈ R.

For all a ∈ R we have

1 = E(0) = E(a + (−a)) = E(a)E(−a),

from which it follows that

E(−a) = (E(a))−1 for all a ∈ R.

If a ∈ R and q ∈ Q we have

ln((E(a))q) = q ln(E(a)) = qa.

If we apply E to both sides of this identity we get

(E(a))q = E(qa) for all a ∈ R+, q ∈ Q.

In particular,
eq = (E(1))q = E(q) for all q ∈ Q. (14.30)
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Now we have defined E(x) for all x ∈ R, but we have only defined xq when

x ∈ R+ and q ∈ Q. (We know what 2
1
2 is, but we have not defined 2

√
2.)

Because of relation (14.30) we often write ex in place of E(x). E is called the
exponential function, and is written

E(x) = ex = exp(x) for all x ∈ R.

We can summarize the results of this example in the following theorem:

14.31 Theorem (Properties of the exponential function.) The expo-
nential function is a function from R onto R+. We have

ea+b = eaeb for all a, b ∈ R.

ea−b =
ea

eb
for all a, b ∈ R. (14.32)

(ea)q = eaq for all a ∈ R, and for all q ∈ Q.

(ea)−1 = e−a for all a ∈ R.

eln(x) = x for all x ∈ R+.

ln(ea) = a for all a ∈ R.

e0 = 1.

e1 = e. (14.33)

Proof: We have proved all of these properties except for relation (14.32). The
proof of (14.32) is the next exercise.

14.34 Exercise. Show that ea−b =
ea

eb
for all a, b ∈ R.

14.35 Exercise. Show that if a ∈ R+ and q ∈ Q, then

aq = eq ln(a).

14.36 Definition (ax.) The result of the last exercise motivates us to make
the definition

ax = ex ln(a) for all x ∈ R and for all a ∈ R+.

14.37 Exercise. Prove the following results:

axay = ax+y for all a ∈ R+ and for all x, y ∈ R.

(ax)y = axy for all a ∈ R+ and for all x, y ∈ R.

(ab)x = axbx for all a, b ∈ R+ and for all x ∈ R.

ln(ax) = x ln(a) for all a ∈ R+ and for all x ∈ R.
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14.5 Inverse Function Theorems

14.38 Lemma. Let f be a strictly increasing continuous function whose
domain is an interval [a, b]. Then the image of f is the interval [f(a), f(b)],
and the function f : [a, b] → [f(a), f(b)] has an inverse.

Proof: It is clear that f(a) and f(b) are in image(f). Since f is continu-
ous we can apply the intermediate value property to conclude that for ev-
ery number z between f(a) and f(b) there is a number c ∈ [a, b] such that
z = f(c), i.e. [f(a), f(b)] ⊂ image(f). Since f is increasing on [a, b] we have
f(a) ≤ f(t) ≤ f(b) whenever a ≤ t ≤ b, and thus image(f) ⊂ [f(a), f(b)]. It
follows that f : [a, b] → [f(a), f(b)] is surjective, and since strictly increasing
functions are injective, f is bijective. By remark (14.22) f has an inverse.

14.39 Exercise. State and prove the analogue of lemma 14.38 for strictly
decreasing functions.

14.40 Exercise. Let f be a function whose domain is an interval [a, b],
and whose image is an interval. Does it follow that f is continuous?

14.41 Exercise. Let f be a continuous function on a closed bounded
interval [a, b]. Show that the image of f is a closed bounded interval [A, B].

14.42 Exercise. Let J and I be non-empty intervals and let f : J → I be
a continuous function such that I = image(f).

a) Show that if f is strictly increasing, then the inverse function for f is
also strictly increasing.

b) Show that if f is strictly decreasing, then the inverse function for f is
also strictly decreasing.

14.43 Theorem (Inverse function theorem.) Let f be a continuous
strictly increasing function on an interval J = [a, b] of positive length, such

that f ′(x) > 0 for all x ∈ interior(J). Let I be the image of J and let

g : I → J

be the inverse function for f . Then g is differentiable on the interior of I and

g′(s) =
1

f ′(g(s))
for all s ∈ interior(I) (14.44)
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Remark: If l is a nonvertical line joining two points (p, q) and (r, s) then
the slope of l is

m =
s− q

r − p
.

The reflection of l about the line whose equation is y = x passes through the
points (q, p) and (s, r), so the slope of the reflected line is

r − p

s− q
=

1

m
.

(p,q)

(s,r)

(r,s)

(q,p)

f

(s,g(s))

graph(  )g

graph(  )

(g(s),s))

g
′(s) = 1

f ′(g(s))

Thus theorem 14.43 says that the tangent to graph(g) at the point (s, g(s))
is obtained by reflecting the tangent to graph(f) at (g(s), s) about the line
whose equation is y = x. This is what you should expect from the geometry
of the situation.
Proof of theorem 14.43: The first thing that should be done, is to prove that
g is continuous. I am going to omit that proof and just assume the continuity
of g, and then show that g is differentiable, and that g′ is given by formula
(14.44).

Let s be a point in the interior of dom(g). then

lim
t→s

g(t)− g(s)

t− s
= lim

t→s

g(t)− g(s)

f(g(t))− f(g(s))

= lim
t→s

1
f(g(t))−f(g(s))

g(t)−g(s)

. (14.45)
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(Observe that we have not divided by zero). Let {tn} be a sequence in
dom(g) \ {s} such that {tn} → s. Then {g(tn)} → g(s) (since g is assumed to
be continuous), and g(tn) 6= g(s) for all n ∈ Z+ (since g is injective). Since f
is differentiable at g(s), it follows that

{
f(g(tn))− f(g(s))

g(tn)− g(s)

}
→ f ′(g(s)).

Since f ′(g(s)) 6= 0 it follows that




1
f(g(tn))−f(g(s))

g(tn)−g(s)



 → 1

f ′(g(s)
.

It follows that

lim
t→s

g(t)− g(s)

t− s
=

1

f ′(g(s))

and the theorem is proved. |||
Remark: The inverse function theorem also applies to continuous functions
f on J such that f ′(s) < 0 for all s ∈ interior (a, b). Formula (14.44) is valid
in this case also.

Remark: Although we have stated the inverse function theorem for functions
on intervals of the form [a, b], it holds for functions defined on any interval.
Let J be an interval, and let f be a continuous strictly increasing function
from J to R such that f ′(x) > 0 for all x in the interior of J . Let p be a point
in the interior of image(J). Then we can find points r and s in image(J) such
that r < p < s. Now f maps the interval [g(r), g(s)] bijectively onto [r, s],
and since p ∈ (r, s) we can apply the inverse function theorem on the interval

[g(r), g(s)] to conclude that g′(p) =
1

f ′(g(p))
. It is not necessary to remember

the formula for g′(p). Once we know that g is differentiable, we can calculate
g′ by using the chain rule, as illustrated by the examples in the next section.

14.6 Some Derivative Calculations

14.46 Example (Derivative of exp.) We know that

ln(E(t)) = t for all t ∈ R.
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If we differentiate both sides of this equation, we get

1

E(t)
E ′(t) = 1,

i.e.
E ′(t) = E(t) for all t ∈ R.

14.47 Example (Derivative of xr.) Let r be any real number and let
f(x) = xr for all x ∈ R+. Then

f(x) = xr = E(r ln(x)),

so by the chain rule

f ′(x) = E ′(r ln(x)) · r

x
= E(r ln(x)) · rx−1 = xrrx−1 = rxr−1.

(Here I have used the result of exercise 14.37.) Thus the formula

d

dx
(xr) = rxr−1

which we have known for quite a while for rational exponents, is actually valid
for all real exponents.

14.48 Exercise (Derivative of ax.) Let a ∈ R+. Show that

d

dx
(ax) = ax ln(a)

for all x ∈ R.

14.49 Example (Derivative of xx.)

d

dx
xx =

d

dx
ex ln(x) = ex ln(x) d

dx
(x ln(x))

= xx(x · 1

x
+ ln(x)) = xx(1 + ln(x)).

Hence
d

dx
xx = xx(1 + ln(x)) for all x ∈ R+.
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14.50 Example (Derivative of arccos.) Let C : [0, π] → [−1, 1] be defined
by

C(x) = cos(x) for all x ∈ [0, π].

C

(−1,π)

graph(arccos)

graph(  )
(π,−1)

We have
C ′(x) = − sin(x) < 0 for all x ∈ (0, π),

so C has an inverse function which is denoted by arccos. By the inverse
function theorem arccos is differentiable on (−1, 1). and we have

cos(arccos(t)) = C(arccos(t)) = t for all t ∈ [−1, 1].

By the chain rule

− sin(arccos(t)) arccos′(t) = 1 for all t ∈ (−1, 1).

Now since the sine function is positive on (0, π) we get

sin(s) =
√

1− cos2(s)

for all s ∈ (0, π), so

sin(arccos(t)) =
√

1− (cos(arccos(t)))2 =
√

1− t2 for all t ∈ (−1, 1).

Thus

arccos′(t) =
−1

sin(arccos(t))
=

−1√
1− t2

for all t ∈ (−1, 1).
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14.51 Exercise (Derivative of arcsin.) Let

S(t) = sin(t) for all t ∈ [−π

2
,
π

2
].

Show that S has an inverse function that is differentiable on the interior of
its domain. This inverse functions is called arcsin. Describe the domain of
arcsin, sketch the graphs of S and of arcsin, and show that

d

dx
arcsin(x) =

1√
1− x2

.

14.52 Example (Derivative of arctan.) Let

T (x) = tan(x) for all x ∈ (−π

2
,
π

2
).

Then T is continuous, and the image of T is unbounded both above and below,
so image(T ) = R. Also

T ′(x) = sec2(x) > 0 for all x ∈ (−π

2
,
π

2
)

so T has an inverse function, which we denote by arctan.

y = −π

2

y = π

2

x = π

2
x = −π

2

graph(arctan)

graph(T )
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For all x ∈ R
tan(arctan(x)) = T (arctan(x)) = x,

so by the chain rule

sec2(arctan(x)) arctan′(x) = 1 for all x ∈ R.

Now
sec2(t) = 1 + tan2(t) for all t ∈ dom(sec),

so
sec2(arctan(x)) = 1 + tan2(arctan(x)) = 1 + x2 for all x ∈ R.

Thus

arctan′(x) =
1

sec2(arctan(x))
=

1

1 + x2
for all x ∈ R.

14.53 Exercise (Derivative of arccot.) Let

V (x) = cot(x) for all x ∈ (0, π).

Show that V has an inverse function arccot, and that

d

dx
arccot(x) = − 1

1 + x2
.

What is dom(arccot)? Sketch the graphs of V and of arccot.

Remark The first person to give a name to the inverse trigonometric functions
was Daniel Bernoulli (1700-1792) who used AS for arcsin in 1729. Other early
notations included arc(cos. = x) and ang(cos. = x)[15, page 175]. Many
calculators and some calculus books use cos−1 to denote arccos. (If you use
your calculator to find inverse trigonometric functions, make sure that you set
the degree-radian-grad mode to radians.)

14.54 Exercise. Calculate the derivatives of the following functions, and
simplify your answers (Here a is a constant.)

a) f(x) = x
√

a2 − x2 + a2 arcsin(
x

a
).

b) g(x) = arcsin(x) +
x

1− x2
.
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c) h(x) = x arccos(ax)− 1

a

√
1− a2x2.

d) k(x) = arctan(ex + e−x).

e) m(x) = x
√

1− x2 + arcsin(x)(2x2 − 1).

f) n(x) = eax(a sin(bx)− b cos(bx)). Here a and b are constants.

g) p(x) = eax(a2x2 − 2ax + 2). Here a is a constant..

14.55 Exercise. Let

l(x) = arctan(tan(x)).

Calculate the derivative of l. What is the domain of this function? Sketch the
graph of l.

14.56 Exercise (Hyperbolic functions.) We define functions sinh and
cosh on R by

cosh(x) =
ex + e−x

2
for all x ∈ R.

sinh(x) =
ex − e−x

2
for all x ∈ R.

These functions are called the hyperbolic sine and the hyperbolic cosine respec-
tively. Show that

d

dx
cosh(x) = sinh(x),

and
d

dx
sinh(x) = cosh(x).

Calculate
d

dx

(
cosh2(x)− sinh2(x)

)
,

and simplify your answer as much as you can. What conclusion can you draw
from your answer? Sketch the graphs of cosh and sinh on one set of coordinate
axes.


