
Chapter 9

Trigonometric Functions

9.1 Properties of Sine and Cosine

9.1 Definition (W (t).) We define a function W :R → R2 as follows.
If t ≥ 0, then W (t) is the point on the unit circle such that the length of

the arc joining (1, 0) to W (t) (measured in the counterclockwise direction) is
equal to t. (There is an optical illusion in the figure. The length of segment
[0, t] is equal to the length of arc W (0)W (t).)

t0−t
W(0)

W(−t)

W(t)

Thus to find W (t), you should start at (1, 0) and move along the circle in a
counterclockwise direction until you’ve traveled a distance t. Since the circum-
ference of the circle is 2π, we see that W (2π) = W (4π) = W (0) = (1, 0). (Here
we assume Archimedes’ result that the area of a circle is half the circumference
times the radius.) If t < 0, we define

W (t) = H(W (−t)) for t < 0 (9.2)

where H is the reflection about the horizontal axis. Thus if t < 0, then W (t)
is the point obtained by starting at (1, 0) and moving |t| along the unit circle
in the clockwise direction.

190
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Remark: The definition of W depends on several ideas that we have not
defined or stated assumptions about, e.g., length of an arc and counterclock-
wise direction. I believe that the amount of work it takes to formalize these
ideas at this point is not worth the effort, so I hope your geometrical intuition
will carry you through this chapter. (In this chapter we will assume quite a bit
of Euclidean geometry, and a few properties of area that do not follow from
our assumptions stated in chapter 5.)

A more self contained treatment of the trigonometric functions can be
found in [44, chapter 15], but the treatment given there uses ideas that we
will consider later, (e.g. derivatives, inverse functions, the intermediate value
theorem, and the fundamental theorem of calculus) in order to define the
trigonometric functions.

We have the following values for W :

W (0)W (π)

W (3π

2
)

W (π

2
)

W (0) = (1, 0) (9.3)

W
(π

2

)
= (0, 1) (9.4)

W (π) = (−1, 0) (9.5)

W
(3π

2

)
= (0,−1) (9.6)

W (2π) = (1, 0) = W (0). (9.7)

In general

W (t + 2πk) = W (t) for all t ∈ R and all k ∈ Z. (9.8)

9.9 Definition (Sine and cosine.) In terms of coordinates, we write

W (t) =
(

cos(t), sin(t)
)
.

(We read “cos(t)” as “cosine of t”, and we read “sin(t)” as “sine of t”.)
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Since W (t) is on the unit circle, we have

sin2(t) + cos2(t) = 1 for all t ∈ R,

and
−1 ≤ sin t ≤ 1, −1 ≤ cos t ≤ 1 for all t ∈ R.

The equations (9.3) - (9.8) show that

cos(0) = 1, sin(0) = 0,

cos
(

π
2

)
= 0, sin

(
π
2

)
= 1,

cos(π) = −1, sin(π) = 0,

cos
(

3π
2

)
= 0, sin

(
3π
2

)
= −1,

and

cos(t + 2πk) = cos t for all t ∈ R and all k ∈ Z,

sin(t + 2πk) = sin t for all t ∈ R and all k ∈ Z.

In equation (9.2) we defined

W (t) = H(W (−t)) for t < 0.

Thus for t < 0,

W (−t) = H(H(W (−t))) = H(W (t)) = H(W (−(−t))),

and it follows that

W (t) = H(W (−t)) for all t ∈ R.

W (x) = (cos(x), sin(x))

W (−x) = (cos(x),− sin(x))
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In terms of components
(

cos(−t), sin(−t)
)

= W (−t) = H(W (t)) = H(cos(t), sin(t))

=
(

cos(t),− sin(t)
)

and consequently

cos(−t) = cos(t) and sin(−t) = − sin(t) for all t ∈ R.

Let s, t be arbitrary real numbers. Then there exist integers k and l such that
s + 2πk ∈ [0, 2π) and t + 2πl ∈ [0, 2π). Let

s′ = s + 2πk and t′ = t + 2πl.

W (0)

W (s′)

W (t′)

W (s′ − t
′)

Then s′ − t′ = (s− t) + 2π(k − l), so

W (s) = W (s′), W (t) = W (t′), W (s− t) = W (s′ − t′).

Suppose t′ ≤ s′ (see figure). Then the length of the arc joining W (s′) to W (t′)
is s′− t′ which is the same as the length of the arc joining (1, 0) to W (s′− t′).
Since equal arcs in a circle subtend equal chords, we have

dist
(
W (s′),W (t′)

)
= dist

(
W (s′ − t′), (1, 0)

)

and hence
dist

(
W (s),W (t)

)
= dist

(
W (s− t), (1, 0)

)
. (9.10)

You can verify that this same relation holds when s′ < t′.

9.11 Theorem (Addition laws for sine and cosine.) For all real num-
bers s and t,

cos(s + t) = cos(s) cos(t)− sin(s) sin(t) (9.12)

cos(s− t) = cos(s) cos(t) + sin(s) sin(t) (9.13)

sin(s + t) = sin(s) cos(t) + cos(s) sin(t) (9.14)

sin(s− t) = sin(s) cos(t)− cos(s) sin(t). (9.15)
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Proof: From (9.10) we know

dist
(
W (s),W (t)

)
= dist

(
W (s− t), (1, 0)

)
,

i.e.,

dist
(
(cos(s), sin(s)), (cos(t), sin(t))

)
= dist

(
(cos(s− t), sin(s− t)), (1, 0)

)
.

Hence
(

cos(s)− cos(t)
)2

+
(

sin(s)− sin(t)
)2

=
(

cos(s− t)− 1
)2

+
(

sin(s− t)
)2

.

By expanding the squares and using the fact that sin2(u) + cos2(u) = 1 for all
u, we conclude that

cos(s) cos(t) + sin(s) sin(t) = cos(s− t). (9.16)

This is equation (9.13). To get equation (9.12) replace t by −t in (9.16). If we

take s =
π

2
in equation (9.16) we get

cos
(π

2

)
cos(t) + sin

(π

2

)
sin(t) = cos

(π

2
− t

)

or
sin(t) = cos

(π

2
− t

)
for all t ∈ R.

If we replace t by
(π

2
− t

)
in this equation we get

sin
(π

2
− t

)
= cos

(π

2
− (

π

2
− t)

)
= cos t for all t ∈ R.

Now in equation (9.16) replace s by
π

2
− s and get

cos
(π

2
− s

)
cos(t) + sin

(π

2
− s

)
sin(t) = cos

(π

2
− s− t

)

or
sin s cos t + cos s sin t = sin(s + t),

which is equation (9.14). Finally replace t by −t in this last equation to get
(9.15). |||

In the process of proving the last theorem we proved the following:
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9.17 Theorem (Reflection law for sin and cos.) For all x ∈ R,

cos(x) = sin(
π

2
− x) and sin(x) = cos(

π

2
− x). (9.18)

9.19 Theorem (Double angle and half angle formulas.) For all t ∈ R
we have

sin(2t) = 2 sin t cos t,
cos(2t) = cos2 t− sin2 t = 2 cos2 t− 1 = 1− 2 sin2 t,

sin2
( t

2

)
=

1− cos t

2
,

cos2
( t

2

)
=

1 + cos t

2
.

9.20 Exercise. Prove the four formulas stated in theorem 9.19.

9.21 Theorem (Products and differences of sin and cos.) For all s, t
in R,

cos(s) cos(t) =
1

2
[cos(s− t) + cos(s + t)], (9.22)

cos(s) sin(t) =
1

2
[sin(s + t)− sin(s− t)], (9.23)

sin(s) sin(t) =
1

2
[cos(s− t)− cos(s + t)], (9.24)

cos(s)− cos(t) = −2 sin
(s + t

2

)
sin

(s− t

2

)
, (9.25)

sin(s)− sin(t) = 2 cos
(s + t

2

)
sin

(s− t

2

)
. (9.26)

Proof: We have

cos(s + t) = cos(s) cos(t)− sin(s) sin(t)

and
cos(s− t) = cos(s) cos(t) + sin(s) sin(t).

By adding these equations, we get (9.22). By subtracting the first from the
second, we get (9.24).
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In equation (9.24) replace s by
s + t

2
and replace t by

t− s

2
to get

sin
(s + t

2

)
sin

(t− s

2

)
=

1

2

[
cos

(s + t

2
− t− s

2

)
− cos

(s + t

2
+

t− s

2

)]

or

− sin
(s + t

2

)
sin

(s− t

2

)
=

1

2
[cos(s)− cos(t)].

This yields equation (9.25).

9.27 Exercise. Prove equations (9.23) and (9.26).

From the geometrical description of sine and cosine, it follows that as t in-

creases for 0 to
π

2
, sin(t) increases from 0 to 1 and cos(t) decreases from 1 to

0. The identities

sin
(π

2
− t

)
= cos(t) and cos

(π

2
− t

)
= sin(t)

indicate that a reflection about the vertical line through x =
π

4
carries the

graph of sin onto the graph of cos, and vice versa.

π

2
0 t π

2
− t

y = sin(x)y = cos(x)

cos(π

2
− t) = sin(t) sin(π

2
− t) = cos(t)
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V (graph(cos)) = graph(cos)
R

π
(graph(sin)) = graph(sin)

V (graph(cos)) = graph(cos)
R

π
(graph(sin)) = graph(sin)

cos(π

2
− x)) = sin(x)

sin(π

2
− x)) = cos(x)

cos(x + 2πk) = cos(x)
sin(x + 2πk) = sin(x)

The condition cos(−x) = cos x indicates that the reflection about the vertical
axis carries the graph of cos to itself.
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The relation sin(−x) = − sin(x) shows that

(x, y) ∈ graph(sin) =⇒ y = sin(x)

=⇒ −y = − sin(x) = sin(−x)

=⇒ (−x,−y) = (−x, sin(−x))

=⇒ (−x,−y) ∈ graph(sin)

=⇒ Rπ(x, y) ∈ graph(sin)

i.e., the graph of sin is carried onto itself by a rotation through π about the
origin.
We have

sin
(π

4

)
= cos

(π

2
− π

4

)
= cos

(π

4

)

and 1 = sin2
(π

4

)
+ cos2

(π

4

)
= 2 cos2

(π

4

)
, so cos2

(π

4

)
=

1

2
and

sin
π

4
= cos

π

4
=

√
2

2
= .707 (approximately).

With this information we can make a reasonable sketch of the graph of sin
and cos (see page 197).

9.28 Exercise. Show that

cos(3x) = 4 cos3(x)− 3 cos(x) for all x ∈ R.

9.29 Exercise. Complete the following table of sines and cosines:

0 π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

π

sin 0
√

2
2

1 0

cos 1
√

2
2

0 −1

π 7π
6

5π
4

4π
3

3π
2

5π
3

7π
4

11π
6

2π

sin 0 −1 0

cos −1 0 1

√
2

2
= .707
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Include an explanation for how you found sin
π

6
and cos

π

6
(or sin

π

3
and cos

π

3
).

For the remaining values you do not need to include an explanation.

Most of the material from this section was discussed by Claudius Ptolemy
(fl. 127-151 AD). The functions considered by Ptolemy were not the sine and
cosine, but the chord, where the chord of an arc α is the length of the segment
joining its endpoints.

A

B

αC

AB =chord(α) AC = sin(α

2
)

chord (α) = 2 sin(
α

2
). (9.30)

Ptolemy’s chords are functions of arcs (measured in degrees), not of numbers.
Ptolemy’s addition law for sin was (roughly)

D · chord(β − α) = chord(β)chord(180◦ − α)− chord(180◦ − β)chord(α),

where D is the diameter of the circle, and 0◦ < α < β < 180◦. Ptolemy

produced tables equivalent to tables of sin(α) for
(

1

4

)◦
≤ α ≤ 90◦ in intervals

of
(

1

4

)◦
. All calculations were made to 3 sexagesimal (base 60) places.

The etymology of the word sine is rather curious[42, pp 615-616]. The
function we call sine was first given a name by Āryabhat.a near the start of
the sixth century AD. The name meant “half chord” and was later shortened
to jyā meaning “chord”. The Hindu word was translated into Arabic as ĵıba,
which was a meaningless word phonetically derived from jyā, but (because the
vowels in Arabic were not written) was written the same as jaib, which means
bosom. When the Arabic was translated into Latin it became sinus. (Jaib
means bosom, bay, or breast: sinus means bosom, bay or the fold of a toga
around the breast.) The English word sine is derived from sinus phonetically.
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9.31 Entertainment (Calculation of sines.) Design a computer program
that will take as input a number x between 0 and .5, and will calculate sin(πx).
(I choose sin(πx) instead of sin(x) so that you do not need to know the value
of π to do this.)

9.2 Calculation of π

The proof of the next lemma depends on the following assumption, which
is explicitly stated by Archimedes [2, page 3]. This assumption involves the
ideas of curve with given endpoints and length of curve (which I will leave
undiscussed).

9.32 Assumption. Let a and b be points in R2. Then of all curves with
endpoints a and b, the segment [ab] is the shortest.

b

b

acurves  with  endpoints     and

a

9.33 Lemma.
sin(x) < x for all x ∈ R+,

and
| sin(x)| ≤ |x| for all x ∈ R.

Proof:
Case 1: Suppose 0 < x <

π

2
.

W (x) = (cos(x), sin(x))

W (−x) = (cos(x),− sin(x))
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Then (see the figure) the length of the arc joining W (−x) to W (x) in the
first and fourth quadrants is x + x = 2x. (This follows from the definition of
W .) The length of the segment [W (x)W (−x)] is 2 sin(x). By our assumption,
2 sin(x) ≤ 2x, i.e., sin(x) ≤ x. Since both x and sin(x) are positive when
0 < x < π

2
, we also have | sin(x)| ≤ |x|.

Case 2: Suppose x ≥ π

2
. Then

sin(x) ≤ | sin(x)| ≤ 1 <
π

2
≤ x = |x|

so sin(x) ≤ x and | sin(x)| ≤ |x| in this case also. This proves the first assertion
of lemma 9.33. If x < 0, then −x > 0, so

| sin(x)| = | sin(−x)| ≤ | − x| = |x|.
Thus

| sin(x)| ≤ |x| for all x ∈ R \ {0},
and since the relation clearly holds when x = 0 the lemma is proved. |||

9.34 Lemma (Limits of sine and cosine.) Let a ∈ R. Let {an} be a
sequence in R such that {an} → a. Then

{cos(an)} → cos(a) and {sin(an)} → sin(a).

Proof: By (9.25) we have

cos(an)− cos(a) = −2 sin
(an + a

2

)
sin

(an − a

2

)
,

so

0 ≤ | cos(an)− cos(a)| ≤ 2| sin
(an + a

2

)
|| sin

(an − a

2

)
|

≤ 2| sin
(an − a

2

)
| ≤ 2|an − a

2
| = |an − a|.

If {an} → a, then {|an − a|} → 0, so by the squeezing rule,

{| cos(an)− cos(a)|} → 0.

This means that {cos(an)} → cos(a).
The proof that {sin(an)} → sin(a) is similar. |||
The proof of the next lemma involves another new assumption.
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9.35 Assumption. Suppose 0 < x <
π

2
. Let the tangent to the unit circle

at W (x) intersect the x axis at p, and let q = (1, 0).

q p

W(−x)

W(x)

Then the circular arc joining W (x) to W (−x) (and passing through q) is
shorter than the curve made of the two segments [W (x)p] and [pW (−x)] (see
the figure).

Remark: Archimedes makes a general assumption about curves that are con-
cave in the same direction [2, pages 2-4] which allows him to prove our as-
sumption.

9.36 Lemma. If 0 < x <
π

2
, then

x ≤ sin(x)

cos(x)
.

Proof: Suppose 0 < x <
π

2
. Draw the tangents to the unit circle at W (x)

and W (−x) and let the point at which they intersect the x-axis be p. (By
symmetry both tangents intersect the x-axis at the same point.) Let b be the
point where the segment [W (x)W (−x)] intersects the x-axis, and let r = W (x).
Triangles 0br and 0rp are similar since they are right triangles with a common
acute angle.
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b p0

W(−x)

r=W(x)

Hence
distance(r,b)

distance(0,b)
=

distance(p, r)

distance(0, r)

i.e.,
sin(x)

cos(x)
=

distance(p, r)

1
.

Now the length of the arc joining W (x) to W (−x) is 2x, and the length of

the broken line from r to p to W (−x) is 2
(
distance(p, r)

)
= 2

sin(x)

cos(x)
, so by

assumption 9.35,

2x ≤ 2
sin(x)

cos x

i.e.,

x ≤ sin(x)

cos(x)
.

This proves our lemma. |||

9.37 Theorem. Let {xn} be any sequence such that xn 6= 0 for all n, and
{xn} → 0. Then

{sin(xn)

xn

}
→ 1. (9.38)

Hence if sin(xn) 6= 0 for all n ∈ Z+ we also have

{ xn

sin(xn)

}
→ 1.
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Proof: If x ∈ (0, π
2
), then it follows from lemma(9.36) that cos(x) ≤ sin(x)

x
.

Since

cos(−x) = cos(x) and
sin(−x)

−x
=

sin(x)

x
,

it follows that

cos(x) ≤ sin(x)

x
whenever 0 < |x| < π

2
.

Hence by lemma 9.33 we have

cos(x) ≤ sin(x)

x
≤ 1 whenever 0 < |x| < π

2
. (9.39)

Let {xn} be a sequence for which xn 6= 0 for all n ∈ Z+ and {xn} → 0.

Then we can find a number N ∈ Z+ such that for all n ∈ Z≥N(|xn| < π

2
). By

(9.39)

n ∈ Z≥N =⇒ cos(xn) ≤ sin(xn)

xn

≤ 1.

By lemma 9.34, we know that {cos(xn)} → 1, so by the squeezing rule
{sin(xn)

xn

}
→ 1. |||

9.40 Example (Calculation of π.) Since
{π

n

}
→ 0, it follows from (9.38)

that

lim
{sin

(
π
n

)

π
n

}
= 1

and hence that
lim

{
n sin

(π

n

)}
= π.

This result can be used to find a good approximation to π. By the half-angle
formula, we have

sin2
( t

2

)
=

1− cos t

2
=

1

2

(
1−

√
1− sin2 t

)

for 0 ≤ t ≤ π

2
. Here I have used the fact that cos t ≥ 0 for 0 ≤ t ≤ π

2
. Also

sin(
π

2
) = 1 so

sin2(
π

4
) =

1

2

(
1−

√
1− sin2 π

2

)
=

1

2

(
1−

√
0
)

=
1

2
.
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sin2(
π

8
) =

1

2

(
1−

√
1− sin2 π

4

)
=

1

2

(
1−

√
1− 1

2

)
=

1

2

(
1−

√
1

2

)
.

By repeated applications of this process I can find sin2
( π

2n

)
for arbitrary n,

and then find
2n sin

( π

2n

)

which will be a good approximation to π.
I wrote a set of Maple routines to do the calculations above. The pro-

cedure sinsq(n) calculates sin2
( π

2n

)
and the procedure mypi(m) calculates

2m sin
( π

2m

)
. The “fi” (which is “if” spelled backwards) is Maple’s way of end-

ing an “if” statement. “Digits := 20” indicates that all calculations are done
to 20 decimal digits accuracy. The command “evalf(Pi)” requests the decimal
approximation to π to be printed.

> sinsq :=

> n-> if n=1 then 1;

> else .5*(1-sqrt(1 - sinsq(n-1)));

> fi;

sinsq := proc(n) options operator,arrow; if n = 1 then 1
else .5 -.5*sqrt(1-sinsq(n-1)) fi end

> mypi := m -> 2^m*sqrt(sinsq(m));

mypi := m → 2m sqrt( sinsq( m ) )

> Digits := 20;

Digits := 20

> mypi(4);

3.1214451522580522853

> mypi(8);

3.1415138011443010542

> mypi(12);

3.1415923455701030907

> mypi(16);

3.1415926523835057093
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> mypi(20);

3.1415926533473327481

> mypi(24);

3.1415922701132732445

> mypi(28);

3.1414977446171452114

> mypi(32);

3.1267833885746006944

> mypi(36);

0

> mypi(40);

0

> evalf(Pi);

3.1415926535897932385

9.41 Exercise. Examine the output of the program above. It appears that
π = 0. This certainly is not right. What can I conclude about π from my
computer program?

9.42 Exercise. Show that the number n sin
(π

n

)
is the area of a regular 2n-

gon inscribed in the unit circle. Make any reasonable geometric assumptions,
but explain your ideas clearly.

9.3 Integrals of the Trigonometric Functions

9.43 Theorem (Integral of cos) Let [a, b] be an interval in R. Then the
cosine function is integrable on [a, b], and

∫ b

a
cos = sin(b)− sin(a).

Proof: Let [a, b] be any interval in R. Then cos is piecewise monotonic on [a, b]
and hence is integrable. Let Pn = {x0, x1, · · · , xn} be the regular partition of
[a, b] into n equal subintervals, and let

Sn =
{x0 + x1

2
,
x1 + x2

2
, · · · , xn−1 + xn

2

}
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be the sample for Pn consisting of the midpoints of the intervals of Pn.

Let ∆n =
b− a

n
so that xi − xi−1 = ∆n and

xi−1 + xi

2
= xi−1 +

∆n

2
for

1 ≤ i ≤ n. Then

∑
(cos, Pn, Sn) =

n∑

i=1

cos
(
xi−1 +

∆n

2

)
·∆n

= ∆n

n∑

i=1

cos
(
xi−1 +

∆n

2

)
.

Multiply both sides of this equation by sin
(∆n

2

)
and use the identity

sin(t) cos(s) =
1

2
[sin(s + t)− sin(s− t)]

to get

sin
(∆n

2

) ∑
(cos, Pn, Sn) = ∆n

n∑

i=1

sin
(∆n

2

)
cos

(
xi−1 +

∆n

2

)

= ∆n

n∑

i=1

1

2
[sin(xi−1 + ∆n)− sin(xi−1)]

=
∆n

2

n∑

i=1

sin(xi)− sin(xi−1)

=
∆n

2

[(
sin(xn)− sin(xn−1)

)
+

(
sin(xn−1)− sin(xn−2)

)

+ · · ·+
(

sin(x1)− sin(x0)
)]

=
∆n

2
[sin(xn)− sin(x0)]

=
∆n

2

(
sin(b)− sin(a)

)
.

Thus
∑

(cos, Pn, Sn) =

(
∆n

2

)

sin
(

∆n

2

)
(

sin(b)− sin(a)
)
.

(By taking n large enough we can guarantee that
∆n

2
< π, and then sin

(∆n

2

)
6= 0,

so we haven’t divided by 0.) Thus by theorem 9.37
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∫ b

a
cos = lim{∑(cos, Pn, Sn)}

= lim





(
sin(b)− sin(a)

)( ∆n

2

sin
(

∆n

2

)
)


 .

=
(

sin(b)− sin(a)
)
· lim





( ∆n

2

sin
(

∆n

2

)
)




=
(

sin(b)− sin(a)
)
· 1 = sin(b)− sin(a). |||

9.44 Exercise. Let [a, b] be an interval in R. Show that
∫ b

a
sin = cos(a)− cos(b). (9.45)

The proof is similar to the proof of (9.43). The magic factor sin
(∆n

2

)
is the

same as in that proof.

9.46 Notation (
∫ a

b
f .) If f is integrable on the interval [a, b], we define

∫ a

b
f = −

∫ b

a
f or

∫ a

b
f(t)dt = −

∫ b

a
f(t)dt.

This is a natural generalization of the convention for Aa
bf in definition 5.67.

9.47 Theorem (Integrals of sin and cos.) Let a and b be any real numbers.
Then ∫ b

a
cos = sin(b)− sin(a).

and ∫ b

a
sin = cos(a)− cos(b).

Proof: We will prove the first formula. The proof of the second is similar. If
a ≤ b then the conclusion follows from theorem 9.43.

If b < a then
∫ b

a
cos = −

∫ a

b
cos = −[sin(a)− sin(b)] = sin(b)− sin(a),

so the conclusion follows in all cases. |||
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9.48 Exercise. Find the area of the set

Sπ
0 (sin) = {(x, y): 0 ≤ x ≤ π and 0 ≤ y ≤ sin x}.

Draw a picture of Sπ
0 (sin).

9.49 Exercise. Find the area of the shaded figure, which is bounded by
the graphs of the sine and cosine functions.

9.50 Example. By the change of scale theorem we have for a < b and
c > 0.

∫ b

a
sin(cx)dx =

1

c

∫ cb

ca
sin x dx

=
− cos(cb) + cos(ca)

c

∫ b

a
cos(cx)dx =

1

c

∫ cb

ca
cos x dx

=
sin(cb)− sin(ca)

c

9.51 Entertainment (Archimedes sine integral) In On the Sphere and
Cylinder 1., Archimedes states the following proposition: (see figure on next
page)
Statement A:

If a polygon be inscribed in a segment of a circle LAL′ so that
all its sides excluding the base are equal and their number even,
as LK . . . A . . . K ′L′, A being the middle point of segment, and if
the lines BB′, CC ′,. . . parallel to the base LL′ and joining pairs of
angular points be drawn, then

(BB′ + CC ′ + . . . + LM) : AM = A′B : BA,

where M is the middle point of LL′ and AA′ is the diameter
through M .[2, page 29]



210 CHAPTER 9. TRIGONOMETRIC FUNCTIONS

H M
A’

L’

L

K’

K

D’

D

C’

C

B

B’

A
RQP GF

We will now show that this result can be reformulated in modern notation as
follows.
Statement B: Let φ be a number in [0, π], and let n be a positive integer.
Then there exists a partitition-sample sequence ({Pn}, {Sn}) for [0, φ], such
that

∑
(sin, Pn, Sn) = (1− cos(φ))

φ

2n + 1

cos( φ
2n

)

sin( φ
2n

)
. (9.52)

In exercise (9.56) you are asked to show that (9.52) implies that
∫ φ

0
sin = 1− cos(φ).

Proof that statement A implies statement B: Assume that statement A is true.
Take the circle to have radius equal to 1, and let

φ = length of arc(AL)

φ

n
= length of arc(AB).

Then

BB′+CC ′+ . . .+LM = 2 sin(
φ

n
)+ 2 sin(

2φ

n
)+ · · ·+2 sin(

(n− 1)φ

n
)+ sin(φ),
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and
AM = 1− cos(φ).

Let

Pn = {0, 2φ

2n + 1
,

4φ

2n + 1
, · · · , 2nφ

2n + 1
, φ},

and

Sn = {0, φ

n
,
2φ

n
, · · · , nφ

n
}.

Then Pn is a partition of [0, φ] with mesh equal to 2φ
2n+1

, and Sn is a sample
for Pn, so ({Pn}, {Sn}) is a partition-sample sequence for [0, φ], and we have

∑
(sin, Pn, Sn) =

2φ

2n + 1

(
sin(

φ

n
) + sin(

2φ

n
) + · · ·+ sin(

(n− 1)φ

n
) +

1

2
sin(φ)

)
.

By Archimedes’ formula, we conclude that

∑
(sin, Pn, Sn) = (1− cos(φ))

φ

2n + 1
· A′B

BA
. (9.53)

We have

length arc(BA) =
φ

n
,

length arc(BA′) = π − φ

n
.

By the formula for the length of a chord (9.30) we have

A′B
BA

=
chord(AB′)
chord(BA)

=
2 sin(arc(AB′)

2
)

2 sin(arc(BA)
2

)
=

sin(
(π−φ

n

2
))

sin(
( φ

n
)

2
)

=
cos( φ

2n
)

sin( φ
2n

)
(9.54)

Equation (9.52) follows from (9.53) and (9.54).
Prove statement A above. Note that (see the figure from statement A)

AM = AF + FP + PG + GQ + · · ·+ HR + RM, (9.55)

and each summand on the right side of (9.55) is a side of a right triangle similar
to triangle A′BA.

9.56 Exercise. Assuming equation (9.52), show that

∫ φ

0
sin = 1− cos(φ).
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9.4 Indefinite Integrals

9.57 Theorem. Let a, b, c be real numbers. If f is a function that is inte-
grable on each interval with endpoints in {a, b, c} then

∫ c

a
f =

∫ b

a
f +

∫ c

b
f.

Proof: The case where a ≤ b ≤ c is proved in theorem 8.18. The rest of the
proof is exactly like the proof of exercise 5.69. |||

9.58 Exercise. Prove theorem 9.57.

We have proved the following formulas:

∫ b

a
xrdx =

br+1 − ar+1

r + 1
for 0 < a < b r ∈ Q \ {−1}, (9.59)

∫ b

a

1

t
dt = ln(b)− ln(a) for 0 < a < b,

∫ b

a
sin(ct)dt =

− cos(cb) + cos(ca)

c
for a < b, and c > 0,

∫ b

a
cos(ct)dt =

sin(cb)− sin(ca)

c
for a < b, and c > 0. (9.60)

In each case we have a formula of the form

∫ b

a
f(t)dt = F (b)− F (a).

This is a general sort of situation, as is shown by the following theorem.

9.61 Theorem (Existence of indefinite integrals.) Let J be an interval
in R, and let f : J → R be a function such that f is integrable on every
subinterval [p, q] of J . Then there is a function F : J → R such that for all
a, b ∈ J ∫ b

a
f(t)dt = F (b)− F (a).

Proof: Choose a point c ∈ J and define

F (x) =
∫ x

c
f(t)dt for all x ∈ J.
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Then for any points a, b in J we have

F (b)− F (a) =
∫ b

c
f(t)dt−

∫ a

c
f(t)dt =

∫ b

a
f(t)dt.

We’ve used the fact that
∫ b

c
f(t)dt =

∫ a

c
f(t)dt +

∫ b

a
f(t)dt for all a, b, c ∈ J. |||

9.62 Definition (Indefinite integral.) Let f be a function that is inte-
grable on every subinterval of an interval J . An indefinite integral for f on J

is any function F : J → R such that
∫ b

a
f(t)dt = F (b)− F (a) for all a, b ∈ J .

A function that has an indefinite integral always has infinitely many indef-
inite integrals, since if F is an indefinite integral for f then so is F + c for any
number c:

(F + c)(b)− (F + c)(a) = (F (b) + c)− (F (a) + c) = F (b)− F (a).

The following notation is used for indefinite integrals. One writes
∫

f(t)dt
to denote an indefinite integral for f . The t here is a dummy variable and can
be replaced by any available symbol. Thus, based on formulas (9.59) - (9.60),
we write

∫
xrdx =

xr+1

r + 1
if r ∈ Q \ {−1}

∫ 1

t
dt = ln(t)

∫
sin(ct)dt = −cos(ct)

c
if c > 0

∫
cos(ct)dt =

sin(ct)

c
if c > 0.

We might also write ∫
xrdr =

xr+1

r + 1
+ 3.

Some books always include an arbitrary constant with indefinite integrals, e.g.,

∫
xrdr =

xr+1

r + 1
+ C if r ∈ Q \ {−1}.
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The notation for indefinite integrals is treacherous. If you see the two
equations

∫
x3dx =

1

4
x4

and ∫
x3dx =

1

4
(x4 + 1),

then you want to conclude

1

4
x4 =

1

4
(x4 + 1), (9.63)

which is wrong. It would be more logical to let the symbol
∫

f(x)dx denote
the set of all indefinite integrals for f . If you see the statements

1

4
x4 ∈

∫
x3dx

and
1

4
(x4 + 1) ∈

∫
x3dx,

you are not tempted to make the conclusion in (9.63).

9.64 Theorem (Sum theorem for indefinite integrals) Let f and g be
functions each of which is integrable on every subinterval of an interval J , and
let c, k ∈ R. Then

∫ (
cf(x) + kg(x)

)
dx = c

∫
f(x)dx + k

∫
g(x)dx. (9.65)

Proof: The statement (9.65) means that if F is an indefinite integral for f
and G is an indefinite integral for G, then cF + kG is an indefinite integral for
cf + kg.

Let F be an indefinite integral for f and let G be an indefinite integral for
g. Then for all a, b ∈ J

∫ b

a

(
cf(x) + kg(x)

)
dx =

∫ b

a
cf(x)dx +

∫ b

a
kg(x)dx

= c
∫ b

a
f(x)dx + k

∫ b

a
g(x)dx

= c
(
F (b)− F (a)

)
+ k

(
G(b)−G(a)

)

=
(
cF (b) + kG(b)

)
−

(
cF (a) + kG(a)

)

= (cF + kG)(b)− (cF + kG)(a).
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It follows that cF + kG is an indefinite integral for cf + kg. |||
9.66 Notation (F (t) |ba.) If F is a function defined on an interval J , and if

a, b are points in J we write F (t) |ba for F (b) − F (a). The t here is a dummy
variable, and sometimes the notation is ambiguous, e.g. x2 − t2 |10. In such
cases we may write F (t) |t=b

t=a. Thus

(x2 − t2) |x=1
x=0= (1− t2)− (0− t2) = 1

while
(x2 − t2) |t=1

t=0= (x2 − 1)− (x2 − 0) = −1.

Sometimes we write F |ba instead of F (t) |ba.
9.67 Example. It follows from our notation that if F is an indefinite

integral for f on an interval J then

∫ b

a
f(t)dt = F (t) |ba

and this notation is used as follows:
∫ b

a
3x2dx = x3

∣∣∣
b

a
= b3 − a3.

∫ π

0
cos(x)dx = sin(x)

∣∣∣
π

0
= 0− 0 = 0.

∫ π

0
sin(3x)dx =

− cos 3x

3

∣∣∣∣
π

0
=
− cos(3π)

3
+

cos(0)

3
=

2

3
.

∫ 2

0
(4x2 + 3x + 1)dx = 4

(x3

3

)
+ 3

(x2

2

)
+ x

∣∣∣∣∣
2

0

= 4 · 8

3
+ 3 · 4

2
+ 2 =

56

3
.

In the last example I have implicitly used
∫

(4x2 + 3x + 1)dx = 4
∫

x2dx + 3
∫

x dx +
∫

1 dx.

9.68 Example. By using the trigonometric identities from theorem 9.21
we can calculate integrals of the form

∫ b
a sinn(cx) cosm(kx)dx where m,n are

non-negative integers and c, k ∈ R. We will find

∫ π
2

0
sin3(x) · cos(3x)dx.
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We have

sin2(x) =
1− cos(2x)

2
,

so

sin3(x) = sin2(x) sin(x) =
1

2
sin(x)− 1

2
cos(2x) sin(x)

=
1

2
sin(x)− 1

2
· 1

2

(
sin(3x)− sin(x)

)

=
3

4
sin(x)− 1

4
sin(3x).

Thus

sin3(x) · cos(3x) =
3

4
cos(3x) sin(x)− 1

4
cos(3x) sin(3x)

=
3

8
[sin(4x)− sin(2x)]− 1

8
sin(6x).

Hence∫ π/2

0
sin3(x) · cos(3x) dx

=
3

8

(− cos(4x))

4

∣∣∣∣∣

π
2

0

− 3

8

(− cos(2x))

2

∣∣∣∣∣

π
2

0

− 1

8

(− cos(6x))

6

∣∣∣∣∣

π
2

0

=
3

32

(
− cos(2π) + cos(0)

)
+

3

16

(
cos(π)− cos(0)

)
+

1

48

(
cos(3π)− cos(0)

)

=
3

16
(−1− 1) +

1

48
(−1− 1) = −3

8
− 1

24
=
−10

24
= − 5

12
.

The method here is clear, but a lot of writing is involved, and there are many
opportunities to make errors. In practice I wouldn’t do a calculation of this
sort by hand. The Maple command

> int((sin(x))^3*cos(3*x),x=0..Pi/2);

responds with the value

- 5/12
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9.69 Exercise. Calculate the integrals

∫ π
2

0
sin x dx,

∫ π
2

0
sin2 x dx and

∫ π
2

0
sin4 x dx.

Then determine the values of
∫ π

2

0
cos x dx,

∫ π
2

0
cos2 x dx and

∫ π
2

0
cos4 x dx

without doing any calculations. (But include an explanation of where your
answer comes from.)

9.70 Exercise. Find the values of the following integrals. If the answer is
geometrically clear then don’t do any calculations, but explain why the answer
is geometrically clear.

a)
∫ 2

1

1

x3
dx

b)
∫ 1

−1
x11(1 + x2)3 dx

c)
∫ 2

0

√
4− x2 dx

d)
∫ π

0
(x + sin(2x))dx

e)
∫ 1

−1

1

x2
dx

f)
∫ 4

1

4 + x

x
dx

g)
∫ 1

0

√
xdx

h)
∫ 2

1

4

x
dx

i)
∫ 1

0
(1− 2x)2dx

j)
∫ 1

0
(1− 2x)dx
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k)
∫ π

0
sin(7x) dx

l)
∫ π

0
sin(8x) dx

9.71 Exercise.

Let A =
∫ π/2

0
(sin(4x))5dx

B =
∫ π/2

0
(sin(3x))5dx

C =
∫ π

2

0
(cos(3x))5dx.

Arrange the numbers A,B,C in increasing order. Try to do the problem
without making any explicit calculations. By making rough sketches of the
graphs you should be able to come up with the answers. Sketch the graphs,
and explain how you arrived at your conclusion. No “proof” is needed.


