
Chapter 8

Integrable Functions

8.1 Definition of the Integral

If f is a monotonic function from an interval [a, b] to R≥0, then we have shown
that for every sequence {Pn} of partitions on [a, b] such that {µ(Pn)} → 0,
and every sequence {Sn} such that for all n ∈ Z+ Sn is a sample for Pn, we
have

{∑(f, Pn, Sn)} → Ab
af.

8.1 Definition (Integral.) Let f be a bounded function from an interval
[a, b] to R. We say that f is integrable on [a, b] if there is a number V such
that for every sequence of partitions {Pn} on [a, b] such that {µ(Pn)} → 0,
and every sequence {Sn} where Sn is a sample for Pn

{∑(f, Pn, Sn)} → V.

If f is integrable on [a, b] then the number V just described is denoted by
∫ b

a
f

and is called “the integral from a to b of f .” Notice that by our definition an
integrable function is necessarily bounded.

The definition just given is essentially due to Bernhard Riemann(1826–

1866), and first appeared around 1860[39, pages 239 ff]. The symbol
∫

was

introduced by Leibniz sometime around 1675[15, vol 2, p242]. The symbol is
a form of the letter s, standing for sum (in Latin as well as in English.) The
practice of attaching the limits a and b to the integral sign was introduced by
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8.1. DEFINITION OF THE INTEGRAL 161

Joseph Fourier around 1820. Before this time the limits were usually indicated
by words.

We can now restate theorems 7.6 and 7.15 as follows:

8.2 Theorem (Monotonic functions are integrable I.) If f is a mono-
tonic function on an interval [a, b] with non-negative values, then f is integrable
on [a, b] and

∫ b

a
f = Ab

af = α({(x, y): a ≤ x ≤ b and 0 ≤ y ≤ f(x)}).

8.3 Theorem (Integrals of power functions.) Let r ∈ Q, and let a, b be
real numbers such that 0 < a ≤ b. Let fr(x) = xr for a ≤ x ≤ b. Then

∫ b

a
fr =





br+1 − ar+1

r + 1
if r ∈ Q \ {−1}

ln(b)− ln(a) if r = −1.

In general integrable functions may take negative as well as positive values

and in these cases
∫ b

a
f does not represent an area.

The next theorem shows that monotonic functions are integrable even if
they take on negative values.

8.4 Example (Monotonic functions are integrable II.) Let f be a
monotonic function from an interval [a, b] to R. Let B be a non-positive
number such that f(x) ≥ B for all x ∈ [a, b]. Let g(x) = f(x)−B.

g=f−B

f

B
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Then g is a monotonic function from [a, b] to R≥0. Hence by theorem 7.6, g is

integrable on [a, b] and
∫ b

a
g = Ab

a(g). Now let {Pn} be a sequence of partitions

of [a, b] such that {µ(Pn)} → 0, and let {Sn} be a sequence such that for each
n in Z+, Sn is a sample for Pn. Then

{∑(g, Pn, Sn)} → Ab
a(g). (8.5)

If Pn = {x0, · · · , xm} and Sn = {s1, · · · , sm} then

∑
(g, Pn, Sn) =

m∑

i=1

g(si)(xi − xi−1)

=
m∑

i=1

(
f(si)−B

)
(xi − xi−1)

=
m∑

i=1

f(si)(xi − xi−1)−B
m∑

i=1

(xi − xi−1)

=
∑

(f, Pn, Sn)−B(b− a).

Thus by (8.5)
{∑(f, Pn, Sn)−B(b− a)} → Ab

a(g).

If we use the fact that {B(b− a)} → B(b− a), and then use the sum theorem
for limits of sequences, we get

{∑(f, Pn, Sn)} → Ab
a(g) + B(b− a).

It follows from the definition of integrable functions that f is integrable on
[a, b] and

∫ b

a
f = Ab

a(g) + B(b− a) =
∫ b

a
g + B(b− a) =

∫ b

a
g − |B|(b− a).

g

f

B
(a) (b)

b

g

a

−B

(c)

a b

−B −

+
g

B

−
f

(d)

+
a b
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Thus in figure b,
∫ b

a
f represents the shaded area with the area of the thick

box subtracted from it, which is the same as the area of the region marked
“+” in figures c and d, with the area of the region marked “−” subtracted
from it.

The figure represents a geometric interpretation for a Riemann sum. In
the figure

s

+

5x51

−−

++

44 xs3xs2xs1xs0 3x 2

f(si) > 0 for i = 1, 2, 3, f(si) < 0 for i = 4, 5.

3∑

i=1

f(si)(xi − xi−1)

is the area of
3⋃

i=1

B
(
xi−1, xi: 0, f(si)

)
and

5∑

i=4

f(si)(xi − xi−1)

is the negative of the area of

5⋃

i=4

B(xi−1, xi : f(si), 0).

In general you should think of
∫ b

a
f as the difference α(S+)− α(S−) where

S+ = {(x, y): a ≤ x ≤ b and 0 ≤ y ≤ f(x)}
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and
S− = {(x, y): a ≤ x ≤ b and f(x) ≤ y ≤ 0}.

8.6 Exercise. The graphs of two functions f, g from [0, 2] to R are sketched
below.

(2,1)

gf

(2,2) 2

1

−1

1 2

2

1

−1

21

Let

F (x) =
(
f(x)

)2
for 0 ≤ x ≤ 2, G(x) =

(
g(x)

)2
for 0 ≤ x ≤ 2.

Which is larger:

a)
∫ 1

0
f or

∫ 1

0
F?

b)
∫ 1

0
g or

∫ 1

0
G?

c)
∫ 1

0
f or

∫ 1

0
g?

d)
∫ 1/2

0
g or

∫ 1/2

0
G?

e)
∫ 2

0
g or

∫ 2

0
G?

Explain how you decided on your answers. Your explanations may be informal,
but they should be convincing.
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8.7 Exercise. Below is the graph of a function g. By looking at the graph
of g estimate the following integrals. (No explanation is necessary.)

–0.5

0.5

1

1 2

Graph of g

a)
∫ 3

4

1
4

g.

b)
∫ 2

1
g.

c)
∫ 3

4

0
g.

8.8 Exercise. Sketch the graph of one function f satisfying all four of the
following conditions.

a)
∫ 1

0
f = 1.

b)
∫ 2

0
f = −1.

c)
∫ 3

0
f = 0.

d)
∫ 4

0
f = 1.
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8.2 Properties of the Integral

8.9 Definition (Operations on functions.) Let f : S → R and g: T → R
be functions where S, T are sets. Let c ∈ R. We define functions f ± g, fg,
cf , f

g
and |f | as follows:

(f + g)(x) = f(x) + g(x) for all x ∈ S ∩ T.
(f − g)(x) = f(x)− g(x) for all x ∈ S ∩ T.
(fg)(x) = f(x)g(x) for all x ∈ S ∩ T.
(cf)(x) = c · f(x) for all x ∈ S.(

f
g

)
(x) = f(x)

g(x)
for all x ∈ S ∩ T such that g(x) 6= 0.

|f |(x) = |f(x)| for all x ∈ S.

Remark: These operations of addition, subtraction, multiplication and divi-
sion for functions satisfy the associative, commutative and distributive laws
that you expect them to. The proofs are straightforward and will be omitted.

8.10 Definition (Partition-sample sequence.) Let [a, b] be an inter-
val. By a partition-sample sequence for [a, b] I will mean a pair of sequences
({Pn}, {Sn}) where {Pn} is a sequence of partitions of [a, b] such that
{µ(Pn)} → 0, and for each n in Z+, Sn is a sample for Pn.

8.11 Theorem (Sum theorem for integrable functions.) Let f, g be
integrable functions on an interval [a, b]. Then f ± g and cf are integrable on
[a, b] and ∫ b

a
(f ± g) =

∫ b

a
f ±

∫ b

a
g,

and ∫ b

a
cf = c

∫ b

a
f.

Proof: Suppose f and g are integrable on [a, b]. Let ({Pn}, {Sn}) be a partition-
sample sequence for [a, b]. If Pn = {x0, · · · , xm} and Sn = {s1, · · · , sm}, then

∑
(f ± g, Pn, Sn) =

m∑

i=1

(f ± g)(si)(xi − xi−1)
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=
m∑

i=1

(
f(si)± g(si)

)
(xi − xi−1)

=
m∑

i=1

f(si)(xi − xi−1)±
m∑

i=1

g(si)(xi − xi−1)

=
∑

(f, Pn, Sn)±∑
(g, Pn, Sn).

Since f and g are integrable, we have

{∑(f, Pn, Sn)} →
∫ b

a
f and {∑(g, Pn, Sn)} →

∫ b

a
g.

By the sum theorem for sequences,

{∑(f ± g), Pn, Sn)} = {∑(f, Pn, Sn)±∑
(g, Pn, Sn)} →

∫ b

a
f ±

∫ b

a
g.

Hence f ± g is integrable and
∫ b

a
(f ± g) =

∫ b

a
f ±

∫ b

a
g. The proof of the

second statement is left as an exercise.

8.12 Notation (
∫ b

a
f(t) dt) If f is integrable on an interval [a, b] we will

sometimes write
∫ b

a
f(x) dx instead of

∫ b

a
f . The “x” in this expression is

a dummy variable, but the “d” is a part of the notation and may not be
replaced by another symbol. This notation will be used mainly in cases where
no particular name is available for f . Thus

∫ 2

1
t3 + 3t dt or

∫ 2

1
x3 + 3x dx or

∫ 2

1
(x3 + 3x)dx

means
∫ 2

1
F where F is the function on [1, 2] defined by F (t) = t3 + 3t for

all t ∈ [1, 2]. The “d” here stands for difference, and dx is a ghost of the
differences xi − xi−1 that appear in the approximations for the integral. The
dx notation is due to Leibniz.

8.13 Example. Let

f(x) = (x− 1)2 − 1

x
+

3√
x

= x2 − 2x + x0 − 1

x
+ 3x−

1
2 .
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This function is integrable over every closed bounded subinterval of (0,∞),
since it is a sum of five functions that are known to be integrable. By several
applications of the sum theorem for integrals we get

∫ 2

1
f =

∫ 2

1
(x2 − 2x + 1− 1

x
+ 3x−

1
2 )dx

=

(
23 − 13

3

)
− 2

(
22 − 12

2

)
+

(
21 − 11

1

)
− ln(2) + 3


2

1
2 − 1

1
2

1
2




=
7

3
− 3 + 1− ln(2) + 6(

√
2− 1) = −17

3
− ln(2) + 6

√
2.

8.14 Exercise. Calculate the following integrals.

a)
∫ a

1
(2− x)2dx. Here a > 1.

b)
∫ 4

1

√
x− 1

x2
dx.

c)
∫ 27

1
x−

1
3 dx.

d)
∫ 27

0
x−

1
3 dx.

e)
∫ 2

1

x + 1

x
dx.

f)
∫ b

a
M dx. Here a ≤ b, and M denotes a constant function.

8.15 Theorem (Inequality theorem for integrals.) Let f and g be in-
tegrable functions on the interval [a, b] such that

f(x) ≤ g(x) for all x ∈ [a, b].

Then ∫ b

a
f ≤

∫ b

a
g.

8.16 Exercise. Prove the inequality theorem for integrals.
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8.17 Corollary. Let f be an integrable function on the interval [a, b]. Sup-
pose |f(x)| ≤ M for all x ∈ [a, b]. Then

∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤ M(b− a).

Proof: We have
−M ≤ f(x) ≤ M for all x ∈ [a, b].

Hence by the inequality theorem for integrals

∫ b

a
−M ≤

∫ b

a
f ≤

∫ b

a
M.

Hence

−M(b− a) ≤
∫ b

a
f ≤ M(b− a).

It follows that ∣∣∣∣∣
∫ b

a
f

∣∣∣∣∣ ≤ M(b− a). |||

8.18 Theorem. Let a, b, c be real numbers with a < b < c, and let f be a
function from [a, c] to R. Suppose f is integrable on [a, b] and f is integrable

on [b, c]. Then f is integrable on [a, c] and
∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Proof: Since f is integrable on [a, b] and on [b, c], it follows that f is bounded
on [a, b] and on [b, c], and hence f is bounded on [a, c]. Let ({Pn}, {Sn}) be a
partition-sample sequence for [a, c]. For each n in Z+ we define a partition P ′

n

of [a, b] and a partition P ′′
n of [b, c], and a sample S ′n for P ′

n, and a sample S ′′n
for P ′′

n as follows:

Let Pn = {x0, x1, · · · , xm}, Sn = {s1, s2, · · · , sm}.
Then there is an index j such that xj−1 ≤ b ≤ xj.

¥¥
¥¥
¥¥
¥¥

¥¥
¥¥
¥¥
¥¥x0 x1 x2 x3 xn−2 xn−1 xnxj xj+1xj−2 xj−1

? ? ? ??
s1 s2 s3 snsn−1

? ??
bsj−1 sj+1
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Let

P ′
n = {x0, · · · , xj−1, b}, P ′′

n = {b, xj, · · · , xm} (8.19)

S ′n = {s1, · · · , sj−1, b}, S ′′n = {b, sj+1, · · · , sm} (8.20)

We have

∑
(f, P ′

n, S ′n) +
∑

(f, P ′′
n , S ′′n)

=
j−1∑

i=1

f(si)(xi − xi−1) + f(b)(b− xj−1) + f(b)(xj − b)

+
m∑

i=j+1

f(si)(xi − xi−1)

=
m∑

i=1

f(si)(xi − xi−1) + f(b)(xj − xj−1)− f(sj)(xj − xj−1)

=
∑

(f, Pn, Sn) + ∆n, (8.21)

where
∆n =

(
f(b)− f(sj)

)
(xj − xj−1).

Let M be a bound for f on [a, c]. Then

|f(b)− f(sj)| ≤ |f(b)|+ |f(sj)| ≤ M + M = 2M.

Also,
(xj − xj−1) ≤ µ(Pn).

Now
0 ≤ |∆n| = |f(b)− f(sj)| · |xj − xj−1| ≤ 2Mµ(Pn).

Since
lim{2Mµ(Pn)} = 0,

it follows from the squeezing rule that {|∆n|} → 0 and hence {∆n} → 0.
From equation (8.21) we have

∑
(f, Pn, Sn) =

∑
(f, P ′

n, S ′n) +
∑

(f, P ′′
n , S ′′n)−∆n. (8.22)

Since µ(P ′
n) ≤ µ(Pn) and µ(P ′′

n ) ≤ µ(Pn), we see that ({P ′
n}, {S ′n}) is a

partition-sample sequence on [a, b], and ({P ′′
n}, {S ′′n}) is a partition-sample
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sequence on [b, c]. Since f was given to be integrable on [a, b] and on [b, c], we
know that

{∑(f, P ′
n, S ′n)} →

∫ b

a
f

and
{∑(f, P ′′

n , S ′′n)} →
∫ c

b
f.

Hence it follows from (8.22) that

{∑(f, Pn, Sn)} →
∫ b

a
f +

∫ c

b
f

i.e., f is integrable on [a, c] and

∫ c

a
f =

∫ b

a
f +

∫ c

b
f. |||

8.23 Corollary. Let a1, a2, · · · , an be real numbers with a1 ≤ a2 · · · ≤ an,
and let f be a bounded function on [a1, an]. If the restriction of f to each of
the intervals [a1, a2], [a2, a3], · · · , [an−1, an] is integrable, then f is integrable on
[a1, an] and ∫ an

a1

f =
∫ a2

a1

f +
∫ a3

a2

f + · · ·+
∫ an

an−1

f.

8.24 Definition (Spike function.) Let [a, b] be an interval. A function
f : [a, b] → R is called a spike function, if there exist numbers c and k, with
c ∈ [a, b] such that

f(x) =
{

0 if x ∈ [a, b] \ {c}
k if x = c.

area  under  graph  of  spike  function

b

(c,k)

a
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8.25 Theorem (Spike functions are integrable.) Let a, b, c, k be real
numbers with a < c and a ≤ b ≤ c. Let

f(x) =
{

0 if x ∈ [a, c] \ {b}
k if x = b.

Then f is integrable on [a, c] and
∫ c

a
f = 0.

Proof: Case 1: Suppose k ≥ 0. Observe that f is increasing on the interval
[a, b] and decreasing on the interval [b, c], so f is integrable on each of these
intervals. The set of points under the graph of f is the union of a horizontal
segment and a vertical segment, and thus is a zero-area set. Hence

∫ b

a
f = Ab

af = 0
∫ c

b
f = Ac

bf = 0.

By the previous theorem, f is integrable on [a, c], and
∫ c

a
f =

∫ b

a
f +

∫ c

b
f = 0 + 0 = 0

.
Case 2: Suppose k < 0. Then by case 1 we see that −f is integrable with

integral equal to zero, so by the sum theorem for integrals
∫

f = 0 too. |||

8.26 Corollary. Let a, b, c, k be real numbers with a < c and a ≤ b ≤ c. Let
f : [a, c] → R be an integrable function and let g: [a, c] → R be defined by

g(x) =
{

f(x) if x ∈ [a, c] \ {b}
k if x = b.

Then g is integrable on [a, c] and
∫ c

a
g =

∫ c

a
f .

8.27 Corollary. Let f be an integrable function from an interval [a, b] to R.
Let a1 · · · an be a finite set of distinct points in R, and let k1 · · · kn be a finite
set of numbers. Let

g(x) =

{
f(x) if x ∈ [a, b] \ {a1, · · · , an}
kj if x = aj for some j with 1 ≤ j ≤ n.

Then g is integrable on [a, b] and
∫ b

a
f =

∫ b

a
g. Thus we can alter an integrable

function on any finite set of points without changing its integrability or its
integral.
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8.28 Exercise. Prove corollary 8.26, i.e., explain why it follows from
theorem 8.25.

8.29 Definition (Piecewise monotonic function.) A function f from
an interval [a, b] to R is piecewise monotonic if there are points a1, a2, · · · , an

in [a, b] with a < a1 < a2 · · · < an < b such that f is monotonic on each of the
intervals [a, a1], [a1, a2], · · · , [an−1, an], [an, b].

8.30 Example. The function whose graph is sketched below is piecewise
monotonic.

ba

piecewise  monotonic  function

8.31 Theorem. Every piecewise monotonic function is integrable.

Proof: This follows from corollary 8.23. |||

8.32 Exercise. Let

f(x) =
{

x if 0 ≤ x < 1
x− 1 if 1 ≤ x ≤ 2.

Sketch the graph of f . Carefully explain why f is integrable, and find
∫ 2

0
f .

8.33 Example. Let g(x) = |(x− 1)(x− 2)|. Then

g(x) =





x2 − 3x + 2 for x ∈ [0, 1]
−x2 + 3x− 2 for x ∈ [1, 2]
x2 − 3x + 2 for x ∈ [2, 3].
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g

2

1

321

Hence g is integrable on [0, 3], and
∫ 3

0
g =

∫ 1

0
(x2 − 3x + 2)dx−

∫ 2

1
(x2 − 3x + 2)dx +

∫ 3

2
(x2 − 3x + 2)dx

=
(

1

3
− 3 · 1

2
+ 2

)
−

(
23 − 13

3
− 3 · 22 − 12

2
+ 2

)

+

(
33 − 23

3
− 3 · 32 − 22

2
+ 2

)

=
(

1

3
− 3

2
+ 2

)
−

(
7

3
− 9

2
+ 2

)
+

(
19

3
− 15

2
+ 2

)

=
13

3
+
−9

2
+ 2 =

11

6

8.34 Exercise. Calculate the following integrals. Simplify your answers if
you can.

a)
∫ 2

0
|x3 − 1|dx.

b)
∫ b

a
(x− a)(b− x)dx. Here 0 < a < b.

c)
∫ b

a
|(x− a)(b− x)|dx. Here 0 < a < b.

d)
∫ 1

0
(t2 − 2)3dt.

8.3 A Non-integrable Function

We will now give an example of a function that is not integrable. Let

S = {m

n
: m ∈ Z, n ∈ Z+, m and n are both odd}
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T = {m

n
: m ∈ Z, n ∈ Z+, m is even and n is odd}.

Then S ∩ T = ∅, since if
m

n
=

p

q
where m, n, and q are odd and p is even,

then mq = np which is impossible since mq is odd and np is even.

8.35 Lemma. Every interval (c, d) in R with d− c > 0 contains a point in
S and a point in T .

Proof: Since d − c > 0 we can choose an odd integer n such that n >
3

d− c
,

i.e., nd − nc > 3. Since the interval (nc, nd) has length > 3, it contains at
least two integers p, q, say nc < p < q < nd. If p and q are both odd, then
there is an even integer between them, and if p and q are both even, there is
an odd integer between them, so in all cases we can find a set of integers {r, s}
one of which is even and the other is odd such that nc < r < s < nd, i.e.,

c <
r

n
<

s

n
< d. Then

r

n
and

s

n
are two elements of (c, d) one of which is in

S, and the other of which is in T . |||

8.36 Example (A non-integrable function.) Let D: [0, 1] → R≥0 be
defined by

D(x) =
{

1 if x ∈ S
0 if x /∈ S.

(8.37)

I will find two partition-sample sequences ({Pn}, {Sn}) and ({Pn}, {Tn}) such
that

{∑(D, Pn, Tn)} → 0

and
{∑(D,Pn, Sn)} → 1.

It then follows that D is not integrable. Let Pn be the regular partition of
[0, 1] into n equal subintervals.

Pn =
{
0,

1

n
,
2

n
, · · · , 1

}
.

Let Sn be a sample for Pn such that each point in Sn is in S and let Tn be a
sample for Pn such that each point in Tn is in T . (We can find such samples
by lemma 8.35.) Then for all n ∈ Z+

∑
(D,Pn, Sn) =

n∑

i=1

D(sn)(xi − xi−1) = 1
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and ∑
(D, Pn, Tn) =

n∑

i=1

D(tn)(xi − xi−1) = 0.

So lim{∑(D, Pn, Sn)} = 1 and lim{∑(D, Pn, Tn)} = 0. Both ({Pn}, {Sn}) and
({Pn}, {Tn}) are partition-sample sequences for [0, 1], so it follows that D is
not integrable.

Our example of a non-integrable function is a slightly modified version of
an example given by P. G. Lejeune Dirichlet (1805-1859) in 1837. Dirichlet’s
example was not presented as an example of a non-integrable function (since
the definition of integrability in our sense had not yet been given), but rather as
an example of how badly behaved a function can be. Before Dirichlet, functions
that were this pathological had not been thought of as being functions. It was
examples like this that motivated Riemann to define precisely what class of
functions are well enough behaved so that we can prove things about them.

8.4 ∗The Ruler Function

8.38 Example (Ruler function.) We now present an example of an inte-
grable function that is not monotonic on any interval of positive length. Define
R : [0, 1] → R by

R(x) =





1 if x = 0 or x = 1
1
2n if x = q

2n where q, n ∈ Z+ and q is odd
0 otherwise.

This formula defines R(x) uniquely: If
q

2n
=

p

2m
where p and q are odd, then

m = n. (If m > n, we get 2m−nq = p, which says that an even number is odd.)
The set S1

0R under the graph of R is shown in the figure.
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This set resembles the markings giving fractions of an inch on a ruler, which
motivates the name ruler function for R. It is easy to see that R is not
monotonic on any interval of length > 0. For each p ∈ R let δp:R → R be
defined by

δp(t) =
{

1 if p = t
0 otherwise.

We have seen that δp is integrable on any interval [a, b] and
∫ b

a
δp = 0. Now

define a sequence of functions Fj by

F0 = δ0 + δ1

F1 = F0 + 1
2
δ 1

2

F2 = F1 + 1
4
δ 1

4
+ 1

4
δ 3

4
...

Fn = Fn−1 + 1
2n

2n−1∑

j=1

δ 2j−1
2n

.

Each function Fj is integrable with integral 0 and

|R(x)− Fj(x)| ≤ 1

2j+1
for 0 ≤ x ≤ 1.
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F R-F0 0

F R-F1 1 F R-F2 2

I will now show that R is integrable.
Let ({Pn}, {Sn}) be a partition-sample sequence for [0, 1]. I’ll show that

{∑(R, Pn, Sn)} → 0.
Let ε be a generic element in R+. Observe that if M ∈ Z+ then

(
1

2M
< ε

)
⇐⇒

(
M ln(

1

2
) < ln(ε)

)
⇐⇒

(
M >

ln(ε)

ln(1
2
)

)
.

Hence by the Archimedian property, we can choose M ∈ Z+ so that
1

2M
< ε.

Then
∑

(R, Pn, Sn) =
∑

(R− FM + FM , Pn, Sn) (8.39)

=
∑

(R− FM , Pn, Sn) +
∑

(FM , Pn, Sn). (8.40)

Now since 0 ≤ R(x)− FM(x) ≤ 1

2M+1
<

1

2
ε for all x ∈ [0, 1], we have

∑
(R− FM , Pn, Sn) ≤ 1

2M+1
<

1

2
ε for all n ∈ Z+.

Since FM is integrable and
∫

FM = 0, we have {∑(FM , Pn, Sn)} → 0 so there

is an N ∈ Z+ such that |∑(FM , Pn, Sn)| < ε

2
for all n ∈ Z≥N . By equation

(8.40) we have

0 ≤ ∑
(R, Pn, Sn) =

∑
(R− FM , Pn, Sn) +

∑
(FM , Pn, Sn)

<
1

2
ε +

1

2
ε = ε for all n ∈ Z≥N .
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Hence {∑(R, Pn, Sn)} → 0, and hence R is integrable and
∫ 1

0
R = 0.

8.41 Exercise. Let R be the ruler function. We just gave a complicated

proof that R is integrable and
∫ 1

0
R = 0. Explain why if you assume R is

integrable, then it is easy to show that
∫ 1

0
R = 0.

Also show that if you assume that the non-integrable function D in equation

(8.37) is integrable then it is easy to show that
∫ 1

0
D = 0.

8.5 Change of Scale

8.42 Definition (Stretch of a function.) Let [a, b] be an interval in R,
let r ∈ R+, and let f : [a, b] → R. We define a new function fr: [ra, rb] → R
by

fr(t) = f(
t

r
) for all t ∈ [ra, rb].

If t ∈ [ra, rb], then
t

r
∈ [a, b], so f(

t

r
) is defined.

2 1/2
fff

b/2
a/2

2b
2a

b
a

The graph of fr is obtained by stretching the graph of f by a factor of r in
the horizontal direction, and leaving it unstretched in the vertical direction.
(If r < 1 the stretch is actually a shrink.) I will call fr the stretch of f by r.
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8.43 Theorem (Change of scale for integrals.) Let [a, b] be an interval
in R and let r ∈ R+. Let f : [a, b] → R and let fr be the stretch of f by r. If f

is integrable on [a, b] then fr is integrable on [ra, rb] and
∫ rb

ra
fr = r

∫ b

a
f , i.e.,

∫ rb

ra
f(

x

r
)dx = r

∫ b

a
f(x)dx. (8.44)

Proof: Suppose f is integrable on [a, b]. Let ({Pn}, {Sn}) be an arbitrary
partition-sample sequence for [ra, rb]. If

Pn = {x0, · · · , xm} and Sn = {s1, · · · , sm},

let
1

r
Pn =

{x0

r
, · · · , xm

r

}
and

1

r
Sn =

{s1

r
, · · · , sm

r

}
.

Then
({

1
r
Pn

}
,
{

1
r
Sn

})
is a partition-sample sequence for [a, b], so

{∑(f, 1
r
Pn,

1
r
Sn)} →

∫ b

a
f . Now

∑
(fr, Pn, Sn) =

m∑

i=1

fr(si)(xi − xi−1)

= r
m∑

i=1

f(
si

r
)
(xi

r
− xi−1

r

)
= r

∑ (
f,

1

r
Pn,

1

r
Sn

)

so

lim{∑(fr, Pn, Sn)} = lim
{
r

∑
(f,

1

r
Pn,

1

r
Sn)

}
= r

∫ b

a
f.

This shows that fr is integrable on [ra, rb], and
∫ rb

ra
fr = r

∫ b

a
f . |||

Remark: The notation fr is not a standard notation for the stretch of a
function, and I will not use this notation in the future. I will usually use the
change of scale theorem in the form of equation (8.44), or in the equivalent
form ∫ B

A
g(rx)dx =

1

r

∫ rB

rA
g(x)dx. (8.45)

8.46 Exercise. Explain why formula (8.45) is equivalent to formula (8.44).
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8.47 Example. We define π to be the area of the unit circle. Since the
unit circle is carried to itself by reflections about the horizontal and vertical
axes, we have

π = 4 (area (part of unit circle in the first quadrant)).

Since points in the unit circle satisfy x2 + y2 = 1 or y2 = 1− x2, we get

π = 4
∫ 1

0

√
1− x2 dx.

We will use this result to calculate the area of a circle of radius a. The points
on the circle with radius a and center 0 satisfy x2 + y2 = a2, and by the same
symmetry arguments we just gave

area(circle of radius a) = 4
∫ a

0

√
a2 − x2 dx = 4

∫ a

0
a

√
1−

(
x

a

)2

dx

= 4a
∫ a·1

a·0

√
1−

(
x

a

)2

dx.

By the change of scale theorem

area(circle of radius a) = 4aa
∫ 1

0

√
1− x2 dx = a2π.

The formulas
∫ 1

0

√
1− x2 dx =

π

4
and

∫ 1

−1

√
1− x2 dx =

π

2

or more generally

∫ a

0

√
a2 − x2 dx =

πa2

4
and

∫ a

−a

√
a2 − x2 =

πa2

2
,

are worth remembering. Actually, these are cases of a formula you already
know, since they say that the area of a circle of radius a is πa2.

8.48 Exercise. Let a, b be positive numbers and let Eab be the set of points
inside the ellipse whose equation is

x2

a2
+

y2

b2
= 1.

Calculate the area of Eab.
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8.49 Exercise. The figure shows the graph of a function f .

21

fgraph(  )

1

0

−1

Let functions g, h, k, l, and m be defined by

a) g(x) = f(
x

3
).

b) h(x) = f(3x).

c) k(x) = f(
x + 3

3
).

d) l(x) = f(3x + 3).

e) m(x) = 3f(
x

3
).

Sketch the graphs of g,h,k, l, and m on different axes. Use the same scale for
all of the graphs, and use the same scale on the x-axis and the y-axis,

8.50 Exercise. The value of
∫ 1

0

1

1 + x2
dx is .7854(approximately). Use

this fact to calculate approximate values for

∫ a

0

1

a2 + x2
dx and

∫ 1
a

0

1

1 + a2x2
dx

where a ∈ R+. Find numerical values for both of these integrals when a = 1
4
.
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8.6 Integrals and Area

8.51 Theorem. Let f be a piecewise monotonic function from an interval
[a, b] to R≥0. Then ∫ b

a
f = Ab

af = α(Sb
af).

Proof: We already know this result for monotonic functions, and from this the
result follows easily for piecewise monotonic functions. |||
Remark Theorem 8.51 is in fact true for all integrable functions from [a, b]
to R≥0, but the proof is rather technical. Since we will never need the result
for functions that are not piecewise monotonic, I will not bother to make an
assumption out of it.

8.52 Theorem. Let a, b ∈ R and let f : [a, b] → R be a piecewise monotonic
function. Then the graph of f is a zero-area set.

Proof: We will show that the theorem holds when f is monotonic on [a, b]. It
then follows easily that the theorem holds when f is piecewise monotonic on
[a, b].

Suppose f is increasing on [a, b]. Let n ∈ Z+ and let P = {x0, x1, · · · , xn}
be the regular partition of [a, b] into n equal subintervals.

ba

Then

xi − xi−1 =
b− a

n
for 1 ≤ i ≤ n

and

graph(f) ⊂
n⋃

i=1

B
(
xi−1, xi: f(xi−1), f(xi)

)
.
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Hence

0 ≤ α
(
graph(f)

)
≤ α

( n⋃

i=1

B(xi−1, xi: f(xi−1), f(xi))
)

≤
n∑

i=1

α
(
B(xi−1, xi: f(xi−1), f(xi))

)

=
n∑

i=1

(xi − xi−1)
(
f(xi)− f(xi−1)

)

=
n∑

i=1

b− a

n

(
f(xi)− f(xi−1)

)

=
b− a

n

n∑

i=1

(
f(xi)− f(xi−1)

)

=
b− a

n

(
f(b)− f(a)

)
.

Now
{b− a

n

(
f(b)− f(a)

)}
→ 0, so it follows from the squeezing rule that the

constant sequence
{
α

(
graph(f)

)}
converges to 0, and hence

α
(
graph(f)

)
= 0. |||

Remark: Theorem 8.52 is actually valid for all integrable functions on [a, b].

8.53 Theorem (Area between graphs.) Let f, g be piecewise monotonic
functions on an interval [a, b] such that g(x) ≤ f(x) for all x ∈ [a, b]. Let

S = {(x, y): a ≤ x ≤ b and g(x) ≤ y ≤ f(x)}.
Then

area(S) =
∫ b

a
f(x)− g(x) dx.

Proof: Let M be a lower bound for g, so that

0 ≤ g(x)−M ≤ f(x)−M for all x ∈ [a, b].

Let
F (x) = f(x)−M, G(x) = g(x)−M

for all x ∈ [a, b], and let

T = {(x, y): a ≤ x ≤ b and G(x) ≤ y ≤ F (x)}.
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g

b

M

f

S

a

G

F

T

a b

Then

(x, y) ∈ T ⇐⇒ a ≤ x ≤ b and G(x) ≤ y ≤ F (x)

⇐⇒ a ≤ x ≤ b and g(x)−M ≤ y ≤ f(x)−M

⇐⇒ a ≤ x ≤ b and g(x) ≤ y + M ≤ f(x)

⇐⇒ (x, y + M) ∈ S

⇐⇒ (x, y) + (0,M) ∈ S.

It follows from translation invariance of area that

area(S) = area(T ).

Let

R = {(x, y): a ≤ x ≤ b and 0 ≤ y ≤ F (x)} = Sb
aF,

V = {(x, y): a ≤ x ≤ b and 0 ≤ y ≤ G(x)} = Sb
aG.

F

a

R

b

V

T

a b

Then V ∪ T = R, and

V ∩ T = {(x, y): a ≤ x ≤ b and y = G(x)} = graph(G).
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It follows from theorem 8.52 that V and T are almost disjoint, so

area(R) = area(V ∪ T ) = area(V ) + area(T ),

and thus
area(T ) = area(R)− area(V ).

By theorem 8.51 we have

area(R) = area(Sb
aF ) =

∫ b

a
F (x) dx

and

area(V ) = area(Sb
aG) =

∫ b

a
G(x) dx.

Thus

area(S) = area(T ) = area(R)− area(V )

=
∫ b

a
F (x) dx−

∫ b

a
G(x) dx

=
∫ b

a

(
F (x)−G(x)

)
dx

=
∫ b

a

(
f(x)−M −

(
g(x)−M)

))
dx

=
∫ b

a
f(x)− g(x) dx. |||

Remark: Theorem 8.53 is valid for all integrable functions f and g. This
follows from our proof and the fact that theorems 8.51 and 8.52 are both valid
for all integrable functions.

8.54 Example. We will find the area of the set R in the figure, which is
bounded by the graphs of f and g where

f(x) =
1

2
x2

and
g(x) = x3 − 3x2 + 3x.
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R  is  the  shaded  region

p

q

Now

g(x)− f(x) = x3 − 3x2 + 3x− 1

2
x2 = x3 − 7

2
x2 + 3x

= x(x2 − 7

2
x + 3) = x(x− 2)(x− 3

2
).

Hence

(g(x) = f(x)) ⇐⇒ (g(x)− f(x) = 0) ⇐⇒
(
x ∈

{
0,

3

2
, 2

})
.

It follows that the points p and q in the figure are

p = (
3

2
, f(

3

2
)) = (

3

2
,
9

8
) and q = (2, f(2)) = (2, 2).

Also, since x(x− 2) ≤ 0 for all x ∈ [0, 2],

g(x)− f(x) ≥ 0 ⇐⇒ x− 3

2
≤ 0 ⇐⇒ x ≤ 3

2
.

(This is clear from the picture, assuming that the picture is accurate.) Thus

area(R) =
∫ 3

2

0
(g − f) +

∫ 2

3
2

(f − g)

=
∫ 3

2

0
(x3 − 7

2
x2 + 3x)dx−

∫ 2

3
2

(x3 − 7

2
x2 + 3x)dx

=


(3

2
)
4 − 04

4


− 7

2


(3

2
)
3 − 03

3


 + 3


(3

2
)
2 − 02

2




−

24 − (3

2
)
4

4


 +

7

2


23 − (3

2
)
3

3


− 3


22 − (3

2
)
2

2


 .
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We have now found the area, but the answer is not in a very informative form.
It is not clear whether the number we have found is positive. It would be
reasonable to use a calculator to simplify the result, but my experience with
calculators is that I am more likely to make an error entering this into my
calculator than I am to make an error by doing the calculation myself, so I
will continue. I notice that three terms in the answer are repeated twice, so I
have

area(R) = 2
(

81

64
− 63

16
+

27

8

)
− 4 +

28

3
− 6

=
81

32
− 63

8
+

27

4
− 2

3

= (2 +
17

32
)− (8− 1

8
) + (6 +

3

4
)− 2

3

=
17

32
+

1

8
+

3

4
− 2

3
=

21

32
+

1

12
=

63 + 8

96
=

71

96
.

Thus the area is about 0.7 From the sketch I expect the area to be a little bit
smaller than 1, so the answer is plausible.

8.55 Exercise. The curve whose equation is

y2 + 2xy + 2x2 = 4 (8.56)

is shown in the figure. Find the area enclosed by the curve.

(The set whose area we want to find is bounded by the graphs of the two
functions. You can find the functions by considering equation (8.56) as a
quadratic equation in y and solving for y as a function of x.)
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8.57 Exercise. Find the areas of the two sets shaded in the figures below:

y = x(x − 2)

y = −x
3

y = 2

3
x

y = 8

9
x

3
−

2

9
x

2
− x

8.58 Exercise. Find the area of the shaded region.

y=(x−1)(x−2)(x−3)

y=−(x−2)(x−3)


