
Chapter 5

Area

In chapter 2 we calculated the area of the set

{(x, y) ∈ R2: 0 ≤ x ≤ a and 0 ≤ y ≤ x2}

where a ≥ 0, and of the set

{(x, y) ∈ R2: 1 ≤ x ≤ b and 0 ≤ y ≤ x−2}

where b > 1.
The technique that was used for making these calculations can be used to

find the areas of many other subsets of R2. The general procedure we will use
for finding the area of a set S will be to find two sequences of polygons {In}
and {On} such that

In ⊂ S ⊂ On for all n ∈ Z+.

We will then have

area(In) ≤ area(S) ≤ area(On) for all n ∈ Z+. (5.1)

We will construct the polygons In and On so that area(On)− area(In) is arbi-
trarily small when n large enough, and we will see that then there is a unique
number A such that

area(In) ≤ A ≤ area(On) for all n ∈ Z+. (5.2)

We will take A to be the area of S.
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5.1 Basic Assumptions about Area

5.3 Definition (Bounded Sets.) A subset S of R2 is bounded if
S ⊂ B(a, b: c, d) for some box B(a, b: c, d). A subset of R2 that is not bounded
is said to be unbounded.

It is clear that every subset of a bounded set is bounded. It is not difficult to
show that if B is a bounded set then a + B is bounded for every a ∈ R2, and
S(B) is bounded for every symmetry of the square, S.

5.4 Example. The set

{(n,
1

n
) : n ∈ Z+}

is an unbounded subset of R2. I cannot draw a picture of an unbounded set,
because the sheet of paper on which I make my drawing will represent a box
containing any picture I draw.

5.5 Definition (Bounded Function.) Let S be a set. A function f : S → R
is called a bounded function if there is a number M such that |f(x)| ≤ M for
all x ∈ S. It is clear that if f is a bounded function on an interval [a, b], then
graph(f) is a bounded subset of R2, since graph(f) ⊂ B(a, b : −M, M). If f
is bounded on S, then any number M satisfying

|f(x)| ≤ M for all x ∈ S

is called a bound for f on S.

We are now ready to state our official assumptions about area. At this
point you should officially forget everything you know about area. Unofficially,
however, you remember everything you know so that you can evaluate whether
the theorems we prove are reasonable. Our aim is not simply to calculate areas,
but to see how our calculations are justified by our assumptions.

We will assume that there is a function α from the set of bounded subsets
of R2 to the real numbers that satisfies the conditions of positivity, additiv-
ity, normalization, translation invariance and symmetry invariance described
below. Any function α that satisfies these conditions will be called an area
function.
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5.6 Assumption (Positivity of area.)

α(S) ≥ 0 for every bounded subset S of R2.

5.7 Definition (Disjoint sets.) We say two sets S, T are disjoint if and
only if S ∩ T = ∅.

5.8 Assumption (Additivity of area.) If S, T are disjoint bounded sub-
sets of R2, then

α(S ∪ T ) = α(S) + α(T ).

5.9 Assumption (Normalization property of area.) For every box
B(a, b: c, d) we have

α
(
B(a, b: c, d)

)
= (b− a)(d− c),

i.e., the area of a box is the product of the length and the width of the box.

5.10 Assumption (Translation invariance of area.) Let S be a bounded
set in R2, and let a ∈ R2, then

α(S) = α(a + S).

5.11 Assumption (Invariance under symmetry.) Let S be a bounded
subset of R2. Then if F is any symmetry of the square

α(F (S)) = α(S).

(See definition 4.12 for the definition of symmetry of the square.)

Remark: I would like to replace the assumptions 5.10 and 5.11 by the single
stronger assumption:

If A and B are bounded subsets of R2, and A is congruent to
B, then α(A) = α(B).

However the problem of defining what congruent means is rather complicated,
and I do not want to consider it at this point.
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5.12 Entertainment (Congruence problem.) Formulate a definition of
what it means for two subsets of R2 to be congruent.

5.13 Example. Let

S = B(0, 1 : 0, 1) ∩ {(x, y) ∈ R2 : x ∈ Q}
T = B(0, 1 : 0, 1) ∩ {(x, y) ∈ R2 : x 6∈ Q}.

I do not know how to make any reasonable drawing of S or T . Any picture
I draw of S would look just like a picture of T , even though the two sets are
disjoint. By additivity and the normalization property for area

α(S) + α(T ) = α(S ∪ T ) = α(B(0, 1 : 0, 1)) = 1.

Since areas are non-negative, it follows that

0 ≤ α(S) ≤ 1 and 0 ≤ α(T ) ≤ 1.

The problem of calculating α(S) exactly cannot be answered on the basis of
the assumptions we have made.

Remarks: The assumptions we have just made are supposed to be intuitively
plausible. When we choose to make a particular set of assumptions, we hope
that the assumptions are consistent, i.e., that no contradictions follow from
them. If we were to add a new assumption:

The area of a circle with radius 1 is 3.14159,

then we would have an inconsistent set of assumptions, because it follows from
the assumptions we have already made that the area of a circle of radius 1 is
greater than 3.141592.

In 1923 Stefan Banach(1892–1945) [5] showed that area functions exist, i.e.,
that the assumptions we have made about area are consistent. Unfortunately
Banach showed that there is more than one area function, and different area
functions assign different values to the set S described in the previous example.

A remarkable result of Felix Hausdorff(1868–1942) [24, pp469–472] shows
that the analogous assumptions for volume in three dimensional space (if we
include the assumption that any two congruent sets in 3 dimensional space R3

have the same volume) are inconsistent. If one wants to discuss volume in R3

then one cannot consider volumes of arbitrary sets. One must considerably
restrict the class of sets that have volumes. A discussion of Hausdorff’s result
can be found in [20].



5.2. FURTHER ASSUMPTIONS ABOUT AREA 87

5.2 Further Assumptions About Area

In this section we will introduce some more assumptions about area. The
assumptions in this section can actually be proved on the basis of the basic
assumptions we have already made, and in fact the proofs are easy (the proofs
are given in appendix B). The reason I have made assumptions out of them is
that they are as intuitively plausible as the assumptions I have already made,
and I do not have time to do everything I want to do. I am omitting the proofs
with regret because I agree with Aristotle that

It is manifest that it is far better to make the principles finite in
number. Nay, they should be the fewest possible provided they
enable all the same results to be proved. This is what mathemati-
cians insist upon; for they take as principles things finite either in
kind or in number.[25, page 178]

5.14 Assumption (Addition rule for area.)

S

T

S ∩ T

For any bounded sets S and T in R2

α(S ∪ T ) = α(S) + α(T )− α(S ∩ T ). (5.15)

and consequently
α(S ∪ T ) ≤ α(S) + α(T ).

5.16 Assumption (Subadditivity of area.) Let n ∈ Z≥1, and let A1, A2,
· · ·, An be bounded sets in R2. Then

α(
n⋃

i=1

Ai) ≤
n∑

i=1

α(Ai). (5.17)
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5.18 Assumption (Monotonicity of area.) Let S, T be bounded sets
such that S ⊂ T . Then α(S) ≤ α(T ).

5.19 Definition (Zero-area set.) We will call a set with zero area a zero-
area set.

From the normalization property it follows that every horizontal or vertical
segment has area equal to 0. Thus every horizontal or vertical segment is a
zero-area set.

5.20 Corollary (to assumption 5.18.) 1 Every subset of a zero-area set
is a zero-area set. In particular the empty set is a zero-area set.

5.21 Corollary (to assumption 5.16.) The union of a finite number of
zero-area sets is a zero-area set.

5.22 Definition (Almost disjoint.) We will say that two bounded subsets
S, T of R2 are almost disjoint if S ∩ T is a zero-area set.

Almost  disjoint  sets

5.23 Examples. If a, b, c are real numbers with a < b < c, then since

B(a, b: p, q) ∩B(b, c: s, t) ⊂ B(b, b: p, q),

the boxes B(a, b: p, q) and B(b, c: s, t) are almost disjoint.
Any zero-area set is almost disjoint from every set – including itself.

5.24 Assumption (Additivity for almost disjoint sets.) Let {R1, · · · , Rn}
be a finite set of bounded sets such that Ri and Rj are almost disjoint whenever
i 6= j. Then

α(
n⋃

i=1

Ri) =
n∑

i=1

α(Ri). (5.25)

1Usually a corollary is attached to a theorem and not to an assumption. A corollary is a
statement that follows immediately from a theorem without a proof. By etymology, it is a
“small gift”.



5.3. MONOTONIC FUNCTIONS 89

5.26 Notation (Area functions α or area) Any real valued function α,
whose domain is the family of bounded subsets of R2, and which satisfies all of
the assumptions listed in sections 5.1 and 5.2 will be called an area function.
In these notes I will use the names “α” and “area” to denote area function.
Thus

α(B(a, b : c, d)) = area(B(a, b : c, d)) = (b− a)(d− c).

5.3 Monotonic Functions

5.27 Definition (Partition.) Let a, b be real numbers with a ≤ b. A
partition P of the interval [a, b] is a finite sequence of points

P = {x0, x1, · · · , xn}

with a = x0 ≤ x1 ≤ x2 · · · ≤ xn = b. The intervals [x0, x1], [x1, x2], · · ·,
[xn−1, xn] are called the subintervals of the partition P , and [xj−1, xj] is the jth

subinterval of P for 1 ≤ j ≤ n. The largest of the numbers xj − xj−1 is called
the mesh of the partition P , and is denoted by µ(P ). The partition

{a, a +
(b− a)

n
, a +

2(b− a)

n
, · · · , a +

n(b− a)

n
= b}

is called the regular partition of [a, b] into n equal subintervals.

5.28 Example. Let

P = {0, 1

16
,
1

8
,
1

4
,
1

2
, 1}

Then P is a partition of [0, 1] into 5 subintervals and µ(P ) = 1− 1

2
=

1

2
.

The regular partition of [1, 2] into 5 subintervals is {1, 6

5
,
7

5
,
8

5
,
9

5
, 2}.

If Qn is the regular partition of [a, b] into n equal subintervals, then µ(Qn) = b−a
n

.

5.29 Exercise. Find a partition P of [0, 1] into five subintervals, such that
µ(P ) = 4

5
, or explain why no such partition exists.

5.30 Exercise. Find a partition Q of [0, 1] into five subintervals, such that
µ(Q) = 1

10
, or explain why no such partition exists.
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5.31 Definition (Monotonic function.) Let J be an interval in R, and
let f : J → R be a function. We say that f is increasing on J if

for all x, y in J
[
(x ≤ y) =⇒ (f(x) ≤ f(y))

]
(5.32)

and we say that f is decreasing on J if

for all x, y in J
[
(x ≤ y) =⇒ (f(x) ≥ f(y))

]
.

We say that f is strictly increasing on J if

for all x, y in J
[
(x < y) =⇒ (f(x) < f(y))

]

and we say that f is strictly decreasing on J if

for all x, y in J
[
(x < y) =⇒ (f(x) > f(y))

]
.

We say that f is monotonic on J if f is either increasing on J or decreasing on
J , and we say that f is strictly monotonic on J if f is either strictly increasing
or strictly decreasing on J .

function
increasing

function
decreasing

function
non−monotonic

A constant function on J is both increasing and decreasing on J .

5.33 Notation (Sb
af) Let f be a function from the interval [a, b] to the

non-negative numbers. We will write

Sb
af = {(x, y) ∈ R2: a ≤ x ≤ b and 0 ≤ y ≤ f(x)},

i.e., Sb
af is the set of points under the graph of f over the interval [a, b].
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Let f be an increasing function from the interval [a, b] to the non-negative
numbers. Let P = {x0, · · · , xn} be a partition of [a, b] and let

Ib
a(f, P ) =

n⋃

i=1

B(xi−1, xi: 0, f(xi−1))

Ob
a(f, P ) =

n⋃

i=1

B(xi−1, xi: 0, f(xi)).

Then

xa
2

b
1x x ba

2x1
bx 21xa

Sb

a
(f) Ib

a
(f, P ) Ob

a
(f, P )

Ib
a(f, P ) ⊂ Sb

af ⊂ Ob
a(f, P ). (5.34)

To see this, observe that since f is increasing

xi−1 ≤ x ≤ xi =⇒ f(xi−1) ≤ f(x) ≤ f(xi),

so

(x, y) ∈ Ib
a(f, P ) =⇒ (x, y) ∈ B(xi−1, xi : 0, f(xi−1)) for some i

=⇒ xi−1 ≤ x ≤ xi and 0 ≤ y ≤ f(xi−1) ≤ f(x) for some i

=⇒ a ≤ x ≤ b and 0 ≤ y ≤ f(x) =⇒ (x, y) ∈ Sb
af.

and also

(x, y) ∈ Sb
af =⇒ xi−1 ≤ x ≤ xi and 0 ≤ y ≤ f(x) ≤ f(xi) for some i

=⇒ (x, y) ∈ B
(
xi−1, xi: 0, f(xi)

)
for some i

=⇒ (x, y) ∈ Ob
a(f, P ).
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By equation (5.34) and monotonicity of area, we have

α
(
Ib
a(f, P )

)
≤ α(Sb

af) ≤ α
(
Ob

a(f, P )
)
. (5.35)

Now

α
(
Ob

a(f, P )
)
− α

(
Ib
a(f, P )

)

=
n∑

i=1

(xi − xi−1)f(xi)−
n∑

i=1

(xi − xi−1)f(xi−1)

=
n∑

i=1

(xi − xi−1)
(
f(xi)− f(xi−1)

)
. (5.36)

Now let µ(P ) be the mesh of P (cf. definition 5.27) so that

0 ≤ xi − xi−1 ≤ µ(P ) for 1 ≤ i ≤ n.

Since f(xi)− f(xi−1) ≥ 0 for all i, we have

(xi − xi−1)
(
f(xi)− f(xi−1)

)
≤ µ(P )

(
f(xi)− f(xi−1)

)

for all i, and hence

n∑

i=1

(xi − xi−1)
(
f(xi)− f(xi−1)

)
≤

n∑

i=1

µ(P )
(
f(xi)− f(xi−1)

)

= µ(P )
n∑

i=1

(
f(xi)− f(xi−1)

)
. (5.37)

Now

n∑

i=1

(
f(xi)− f(xi−1)

)
=

(
f(xn)− f(xn−1)

)
+

(
f(xn−1)− f(xn−2)

)

+ · · ·+
(
f(x1)− f(x0)

)

= f(xn)− f(x0) = f(b)− f(a).

so by equations (5.37) and (5.36), we have

α
(
Ob

a(f, P )
)
− α

(
Ib
a(f, P )

)
≤ µ(P )

(
f(b)− f(a)

)
.
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Now suppose that A is any real number that satisfies

α(Ib
a(f, P )) ≤ A ≤ α(Ob

a(f, P )) for every partition P of [a, b].

We will show that A = α(Sb
af). We have

−α(Ob
a(f, P )) ≤ −A ≤ −α(Ib

a(f, P )).

It follows from (5.35) that

α(Ib
a(f, P ))− α(Ob

a(f, P )) ≤ α(Sb
af)− A ≤ α(Ob

a(f, P ))− α(Ib
a(f, P )).

Thus

−µ(P )(f(b)− f(a)) ≤ α(Sb
af)− A ≤ µ(P )(f(b)− f(a)) (5.38)

for every partition P of [a, b]. Since we can find partitions P with µ(P ) smaller
than any preassigned number, it follows that

A = α(Sb
af). (5.39)

(After we have discussed the notion of limit, we will come back and recon-
sider how (5.39) follows from (5.38). For the present, I will just say that the
implication is intuitively clear.) We have now proved the following theorem:

5.40 Theorem. Let f be an increasing function from the interval [a, b] to
R≥0, and let P = {x0, x1, · · · , xn} be a partition of [a, b]. Let

Sb
af = {(x, y) ∈ R2: a ≤ x ≤ b and 0 ≤ y ≤ f(x)},

Ib
a(f, P ) =

n⋃

i=1

B
(
xi−1, xi: 0, f(xi−1)

)
, (5.41)

Ob
a(f, P ) =

n⋃

i=1

B
(
xi−1, xi: 0, f(xi)

)
, (5.42)

Ab
af = α(Sb

af).

Then
α

(
Ib
a(f, P )

)
≤ Ab

af ≤ α
(
Ob

a(f, P )
)

(5.43)

and
α

(
Ob

a(f, P )
)
− α

(
Ib
a(f, P )

)
≤ µ(P )

(
f(b)− f(a)

)
. (5.44)
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Also

α
(
Ib
a(f, P )

)
=

n∑

i=1

f(xi−1)(xi − xi−1) (5.45)

α
(
Ob

a(f, P )
)

=
n∑

i=1

f(xi)(xi − xi−1). (5.46)

If A is any real number such that

α(Ib
a(f, P )) ≤ A ≤ α(Ob

a(f, P )) for every partition P of [a, b],

then
A = Ab

a(f).

The following picture illustrates the previous theorem.

(P)µ

(P)µ

f(b)−f(a)

(b,f(b))

(a,f(a))

ba

5.47 Exercise. A version of theorem 5.40 for decreasing functions is also
valid. To get this version you should replace the word “increasing” by “de-
creasing” and change lines (5.41), (5.42), (5.44), (5.45) and (5.46). Write down
the proper versions of the altered lines. As usual, use I to denote areas inside
Sb

af and O to denote sets containing Sb
af . Draw a picture corresponding to

the above figure for a decreasing function.
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5.48 Definition (Right triangle Tc) Let a and b be non-zero real numbers,
and let c = (a, b). We define the triangle Tc = T(a,b) to be the set of points
between the line segment [0c] and the x-axis. By example 4.8, we know that
the equation of the line through 0 and c is y = b

a
x. Hence we have:

If a > 0 and b > 0, then T(a,b) = {(x, y) : 0 ≤ x ≤ a and 0 ≤ y ≤ b
a
x}

-

6

#
#

#
##

T(a,b)

(0, 0)

(a, b)

(a, 0)

If a > 0 and b < 0, then T(a,b) = {(x, y) : 0 ≤ x ≤ a and b
a
x ≤ y ≤ 0}

-6
c

c
c

cc

T(a,b)
(0, 0) (a, 0)

(a, b)

If a < 0 and b < 0, then T(a,b) = {(x, y) : a ≤ x ≤ 0 and b
a
x ≤ y ≤ 0}

-6
#

#
#

##

T(a,b) (0, 0)(a, 0)

(a, b)

If a < 0 and b > 0, then T(a,b) = {(x, y) : a ≤ x ≤ 0 and 0 ≤ y ≤ b
a
x}

-

6

c
c

c
cc

T(a,b)

(0, 0)

(a, b)

(a, 0)

5.49 Remark. We know from Euclidean geometry that

α(T(a,b)) =
1

2
|a||b|. (5.50)

I would like to show that this relation follows from our assumptions about
area. If H, V and Rπ are the reflections and rotation defined in definition 4.9,
then we can show without difficulty that for a > 0 and b > 0

T(−a,b) = H(T (a, b)),

T(a,−b) = V (T(a,b)), and

T(−a,−b) = Rπ(T(a,b))
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so by invariance of area under symmetry,

α(T(a,b)) = α(T(−a,b)) = α(T(a,−b)) = α(T(−a,−b))

when a and b are positive. It follows that if we prove formula (5.50) when a
and b are positive, then the formula holds in all cases. For example if a and b
are positive, and we know that (5.50) holds when a and b are positive, we get

α(T(−a,b)) = α(T(a,b)) =
1

2
|a||b| = 1

2
| − a||b|,

and thus our formula holds when a is negative and b is positive.

5.51 Theorem. Let a and b be non-zero real numbers, and let T(a,b) be the
set defined in definition 5.48. Then

α(T(a,b)) =
1

2
|a||b|.

Proof: By the previous remark, if is sufficient to prove the theorem for the
case when a and b are positive. So suppose that a and b are positive.

-

6

#
#

#
#

#
#

#
#

#
#

#
#

#
##

T(a,b)

(0, 0)

(a, b)

(a, 0)
(−a, 0)

(−a,−b)

(0, b)

E

Rπ(T(a,b))

Let E = (a, b) + Rπ(T(a,b)). It appears from the figure, and is straightforward
to show, that

E = {(x, y) : 0 ≤ x ≤ a and
b

a
x ≤ y ≤ b}.

By translation invariance of area,

α(E) = α(Rπ(T(a,b))) = α(T(a,b)).
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We have
E ∪ T(a,b) = B(0, a : 0, b),

and
E ∩ T(a,b) = [0c] where c = (a, b).

By the addition rule for area (assumption 5.14) we have

ab = α(B(0, a : 0, b))

= α(E ∪ T(a,b))

= α(E) + α(T(a,b))− α(E ∩ T(a,b))

= 2α(T(a,b))− α([0c]),

i.e.,

α(T(a,b)) =
1

2
ab +

1

2
α([0c]).

Thus our theorem will follow if we can show that the segment [0c] is a zero-area
set. We will prove this as the next theorem.

5.52 Theorem. Let c = (a, b) be a point in R2. Then

α([0c]) = 0.

Proof: If a = 0 or b = 0, then [0c] is a box with width equal to zero, or
height equal to zero, so the theorem holds in this case. Hence we only need to
consider the case where a and b are non-zero. Since any segment [0c] can be
rotated or reflected to a segment [0q] where q is in the first quadrant, we may
further assume that a and b are both positive. Let n be a positive integer, and
for 1 ≤ j ≤ n let

Bn
j = B

(
a(j − 1)

n
,
aj

n
:
b(j − 1)

n
,
bj

n

)
.
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Bn
1

Bn
2

Bn
n

(a, b)

( 0
n
, 0

n
) a

n
2a
n

na
n

b
n

2b
n

nb
n

©©©©©©©©©©©©©©©©©©©

Then

[0c] ⊂
n⋃

j=1

Bn
j , (5.53)

since

x ∈ [0c] =⇒ x = (ta, tb) for some t ∈ [0, 1]

=⇒ x = (ta, tb) where
j − 1

n
≤ t ≤,

j

n
for some j with 1 ≤ j ≤ n

=⇒ x = (ta, tb) where
a(j − 1)

n
≤ ta ≤ aj

n

and
b(j − 1)

n
≤ bt ≤ bj

n
for some j with 1 ≤ j ≤ n

=⇒ x ∈ Bn
j for some j with 1 ≤ j ≤ n.

For each j we have

α(Bn
j ) =

a

n
· b

n
=

ab

n2
.

Also the sets Bn
j and Bn

k are almost disjoint whenever 1 ≤ j, k ≤ n and j 6= k.
(If j and k differ by more than 1, then Bn

j and Bn
k are disjoint, and if j and

k differ by 1, then Bn
j ∩ Bn

k consists of a single point.) By additivity for
almost-disjoint sets (assumption 5.25), it follows that

α(
n⋃

j=1

Bn
j ) =

n∑

j=1

α(Bn
j ) =

n∑

j=1

ab

n2
=

nab

n2
=

ab

n
.
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By (5.53) and monotonicity of area we have

α([0c]) ≤ α(
n⋃

j=1

Bn
j ) =

ab

n
for every positive integer n. (5.54)

In order to conclude from this that α([0c]) = 0 We now make use of the
Archimedean property of real numbers (see (C.79) in Appendix C) which says
that for any real number x there is a positive integer n with n > x. We know
α([0c]) ≥ 0, since all areas are non-negative. Suppose (in order to get a con-
tradiction) that α([0c]) is positive. Then by the Archimedean property, there
is a positive integer N such that N > ab

α([0c])
. This implies that α([0c]) > ab

N
,

and this contradicts (5.54). Hence α([0c]) is not positive, and we conclude
that α([0c]) = 0. |||

Archimedes’ statement of the Archimedean property differs from our state-
ment. He assumes that

Further, of unequal lines, unequal surfaces, and unequal solids, the
greater exceeds the less by such a magnitude as, when added to
itself, can be made to exceed any assigned magnitude among those
which are comparable with [it and with] one another.[2, page 4]

5.55 Exercise. Let a and b be points in R2. Show that segment [ab] is a
zero are set. (Use theorem 5.52. Do not reprove theorem 5.52).

5.56 Entertainment (Area of a triangle) Let x1 = (x1, y1), x2 = (x2, y2)
and x3 = (x3, y3) be three points in R2, and let T be the triangle with vertices
x1, x2 and x3. Let

xs = smallest of x1, x2 and x3

xl = largest of x1, x2 and x3

ys = smallest of y1, y2 and y3

yl = largest of y1, y2 and y3.

Then the box B(xs, xl : ys, yl) is an almost-disjoint union of T and three
triangles which are translates of triangles of the form Tc. Since you know how
to find the area of a box and of a triangle Tc, you can find the area of T .
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(xl, yl)

(xs, ys)
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T

Using this remark show that for the triangles pictured below, α(T 1) = 1
2
(a1b2−a2b1),

and α(T 2) = 1
2
(a2b1 − a1b2).
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@
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(0, 0)

(a1, a2)

(b1, b2)

0 < b1 < a1 and 0 < b2 < a2

T 1

´
´

´
´

´́

A
A

A
A

A
A

AA
aaaaaaaaaa

(0, 0)

(b1, b2)

(a1, a2)

T 2

a1 < 0 < b1 and 0 < b2 < a2

Then choose another triangle T 3 with vertices 0, a and b, where the coordi-
nates of the points are related in a way different from the ways shown for T 1

and T 2, and calculate the area of T 3. You should find that

α(T 3) =
1

2
|a1b2 − a2b1|

in all cases. Notice that if some coordinate is zero, the formula agrees with
theorem 5.51.

5.4 Logarithms.

5.57 Notation (Ab
af , Ab

a[f(t)].) Let f be a bounded function from the
interval [a, b] to R≥0. We will denote the area of Sb

af by Ab
af . Thus

Ab
af = α

(
{(x, y) ∈ R2: a ≤ x ≤ b and 0 ≤ y ≤ f(x)}

)
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We will sometimes write Ab
a[f(t)] instead of Ab

af . Thus, for example

Ab
a[t

2] = α
(
{(x, y) ∈ R2: a ≤ x ≤ b and 0 ≤ y ≤ x2}

)

We will also write Ib
a([f(t)], P ) and Ob

a([f(t)], P ) for Ib
a(f, P ) and Ob

a(f, P )
respectively.

5.58 Lemma. 2 Let a, b, and c be real numbers such that 0 < a < b and
c > 0. Then

Abc
ac

[1

t

]
= Ab

a

[1

t

]
.

Proof: Let P = {x0, x1, · · · , xn} be a partition of [a, b], and let

cP = {cx0, cx1, · · · , cxn}
be the partition of [ca, cb] obtained by multiplying the points of P by c.

xi−1 xi cxi−1 cxi

(xi−1,
1

xi−1

)

(xi,
1

xi

)
(cxi−1,

1

cxi−1

)
(cxi,

1

cxi

)

Then

α(Ibc
ac(

[1

t

]
, cP )) =

n∑

i=1

1

cxi

(cxi − cxi−1) =
n∑

i=1

1

cxi

· c(xi − xi−1)

=
n∑

i=1

1

xi

(xi − xi−1) = α(Ib
a(

[1

t

]
, P )) (5.59)

and

α(Obc
ac(

[1

t

]
, cP )) =

n∑

i=1

1

cxi−1

(cxi − cxi−1) =
n∑

i=1

1

cxi−1

· c(xi − xi−1)

=
n∑

i=1

1

xi−1

(xi − xi−1) = α(Ob
a(

[1

t

]
, P )) (5.60)

2A lemma is a theorem which is proved in order to help prove some other theorem.
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We know that

α(Ibc
ac(

[1

t

]
, cP )) ≤ Abc

ac

[1

t

]
≤ α(Obc

ac(
[1

t

]
, cP )).

Hence by (5.59) and (5.60) we have

α(Ib
a(

[1

t

]
, P )) ≤ Abc

ac

[1

t

]
≤ α(Ob

a(
[1

t

]
, P ))

for every partition P of [a, b]. It follows from this and the last statement of
theorem 5.40 that

Abc
ac

[1

t

]
= Ab

a

[1

t

]
. |||

5.61 Exercise. From lemma 5.58 we see that

Ab
a

[1

t

]
= Abc

ac

[1

t

]

whenever 0 < a < b, and c > 0. Use this result to show that for a ≥ 1 and
b ≥ 1

Aab
1

[1

t

]
= Aa

1

[1

t

]
+ Ab

1

[1

t

]
. (5.62)

5.63 Definition (L(x).) We will define a function L: [1,∞) → R by

L(a) = Aa
1

[1

t

]
for all a ∈ [1,∞).

L(a)
1 a

1

2

y=1/x

2

shaded  area  =
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By exercise 5.61 we have

L(ab) = L(a) + L(b) for all a ≥ 1, b ≥ 1. (5.64)

In this section we will extend the domain of L to all of R+ in such a way that
(5.64) holds for all a, b ∈ R+.

5.65 Theorem. Let a, b, c be real numbers such that a ≤ b ≤ c, and let f be
a bounded function from [a, b] to R≥0. Then

Ac
af = Ab

af + Ac
bf. (5.66)

Proof: We want to show

α(Sc
af) = α(Sb

af) + α(Sc
bf).

Since Sc
af = Sb

af ∪ Sc
bf and the sets Sb

af and Sc
bf are almost disjoint, this

conclusion follows from our assumption about additivity of area for almost
disjoint sets.

I now want to extend the definition of Ab
af to cases where b may be less

than a. I want equation (5.66) to continue to hold in all cases. If c = a in
(5.66), we get

0 = Aa
af = Ab

af + Aa
bf

i.e.,
Aa

bf = −Ab
af.

Thus we make the following definition:

5.67 Definition. Let a, b be real numbers with a ≤ b and let f be a
bounded function from [a, b] to R≥0. Then we define

Aa
bf = −Ab

af or Aa
b [f(t)] = −Ab

a[f(t)].

5.68 Theorem. Let a, b, c be real numbers and let f be a bounded non-
negative real valued function whose domain contains an interval containing
a, b, and c. Then

Ac
af = Ab

af + Ac
bf.
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Proof: We need to consider the six possible orderings for a, b and c. If
a ≤ b ≤ c we already know the result. Suppose b ≤ c ≤ a. Then Aa

bf = Ac
bf+Aa

cf
and hence −Ab

af = Ac
bf − Ac

af , i.e., Ac
af = Ab

af + Ac
bf . The remaining four

cases are left as an exercise.

5.69 Exercise. Prove the remaining four cases of theorem 5.68.

5.70 Definition (Logarithm.) If a is any positive number, we define the
logarithm of a by

ln(a) = L(a) = Aa
1

[1

t

]
.

5.71 Theorem (Properties of Logarithms.) For all a, b ∈ R+ and all
r ∈ Q we have

L(ab) = L(a) + L(b)

L
(a

b

)
= L(a)− L(b)

L(a−1) = −L(a)

L(ar) = rL(a) (5.72)

L(1) = 0. (5.73)

Proof: Let a, b, c ∈ R+. From lemma 5.58 we know that if a ≤ c then

Ac
a

[1

t

]
= Abc

ba

[1

t

]
(5.74)

If c < a we get

Ac
a

[1

t

]
= −Aa

c

[1

t

]
= −Aba

bc

[1

t

]
= Abc

ba

[1

t

]

so equation (5.74) holds in all cases. Let a, b be arbitrary elements in R+.
Then

L(ab) = Aab
1

[1

t

]
= Aa

1

[1

t

]
+ Aab

a

[1

t

]

= Aa
1

[1

t

]
+ Ab

1

[1

t

]
= L(a) + L(b).
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Also

L(1) = A1
1

[1

t

]
= 0,

so
0 = L(1) = L(a · a−1) = L(a) + L(a−1)

and it follows from this that

L(a−1) = −L(a).

Hence
L

(a

b

)
= L(a · b−1) = L(a) + L(b−1) = L(a)− L(b).

5.75 Lemma. For all n ∈ Z≥0, L(an) = nL(a).

Proof: The proof is by induction on n. For n = 0 the lemma is clear. Suppose
now that the lemma holds for some n ∈ Z≥0, i.e., suppose that L(an) = nL(a).
Then

L(an+1) = L(an · a) = L(an) + L(a) = nL(a) + L(a) = (n + 1)L(a).

The lemma now follows by induction.

If n ∈ Z− then −n ∈ Z+ and

L(an) = L
(
(a−n)−1

)
= −L(a−n) = −(−n)L(a) = nL(a).

Thus equation (5.72) holds whenever r ∈ Z. If p ∈ Z and n ∈ Z \ {0}, then

pL(a) = L(ap) = L
(
(a

p
n )n

)
= nL

(
a

p
n

)

so
L

(
a

p
n

)
=

p

n
L(a).

Thus (5.72) holds for all r ∈ Q. |||

5.76 Theorem. Let a and b be numbers such that 0 < a < b. Then

Ab
a

[1

t

]
= ln(

b

a
) = ln(b)− ln(a).
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Proof: By lemma 5.58

Ab
a

[1

t

]
= Aba−1

aa−1

[1

t

]
= Aba−1

1

[1

t

]
= ln(

b

a
) = ln(b)− ln(a). |||

Logarithms were first introduced by John Napier (1550-1632) in 1614.
Napier made up the word logarithm from Greek roots meaning ratio num-
ber, and he spent about twenty years making tables of them. As far as I
have been able to find out, the earliest use of ln for logarithms was by Irving
Stringham in 1893[15, vol 2, page 107]. The notation log(x) is probably more
common among mathematicians than ln(x), but since calculators almost al-
ways calculate our function with a key called “ln”, and calculate something
else with a key called “log”, I have adopted the “ln” notation. (Napier did
not use any abbreviation for logarithm.) Logarithms were seen as an impor-
tant computational device for reducing multiplications to additions. The first
explicit notice of the fact that logarithms are the same as areas of hyperbolic
segments was made in 1649 by Alfons Anton de Sarasa (1618-1667), and this
observation increased interest in the problem of calculating areas of hyperbolic
segments.

5.77 Entertainment (Calculate ln(2).) Using any computer or calculator,
compute ln(2) accurate to 10 decimal places. You should not make use of any
special functions, e.g., it is not fair to use the “ln” key on your calculator.

There are better polygonal approximations to A2
1

[1

t

]
than the ones we have

discussed.

The graph of the logarithm function is shown below.

e21

lny=     (x)

1
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We know that ln(1) = 0 and it is clear that ln is strictly increasing.

s

(s, 1

s
)

r

(r, 1

r
)

If 0 < r < s, then

ln(s)− ln(r) = As
r

[1

t

]
> (s− r)

1

s
> 0.

From the fact that ln(an) = n ln(a) for all n ∈ Z, it is clear that ln takes on
arbitrarily large positive and negative values, but the function increases very
slowly. Let

P = {1, 4

3
,
5

3
,
6

3
}

be the regular partition of [1, 2] into three subintervals.

2

(2, 1

2
)

5

3

4

3
1

(1, 1)

Then

ln(2) = A2
1

[1

t

]
≥ α(I2

1 (
[1

t

]
, P ))

=
1

3
· 3

4
+

1

3
· 3

5
+

1

3
· 3

6
=

1

4
+

1

5
+

1

6
=

37

60
.

Now

ln(2) = A2
1

[1

t

]
≤ α

(
B(1, 2: 0, 1)

)
= 1,
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and

ln(4) = ln(22) = 2 ln(2) ≥ 2 · 37

60
> 1,

i.e.,
ln(2) ≤ 1 ≤ ln(4). (5.78)

There is a unique number e ∈ [2, 4] such that ln(e) = 1. The uniqueness is
clear because ln is strictly increasing.

The existence of such a number was taken as obvious before the nineteenth
century. Later we will introduce the intermediate value property which will
allow us to prove that such a number e exists. For the time being, we will
behave like eighteenth century mathematicians, and just assert that such a
number e exists.

5.79 Definition (e.) We denote the unique number in R+ whose logarithm
is 1 by e.

5.80 Exercise. Prove that 2 ≤ e ≤ 3. (We already know 2 ≤ e.)

5.81 Entertainment (Calculate e.) Using any computing power you have,
calculate e as accurately as you can, e.g., as a start, find the first digit after
the decimal point.

5.5 ∗Brouncker’s Formula For ln(2)

The following calculation of ln(2) is due to William Brouncker (1620-1684)[22,
page 54].

Let P2n = {x0, x1, · · · , x2n} denote the regular partition of the interval [1, 2]
into 2n equal subintervals. Let

K(2n) = I2
1 (

[1

t

]
, P2n) =

2n⋃

i=1

B(xi−1, xi; 0,
1

xi

).

We can construct K(2n+1) from K(2n) by adjoining a box of width
1

2n+1
to

the top of each box B(xi−1, xi; 0,
1
xi

) that occurs in the definition of K(2n) (see
figures a) and b)).
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4
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4
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K(1) = lightly shaded region K(2) = lightly shaded region
K(2) = total shaded region K(4) = total shaded region

figure a figure b

We have

α(K(1)) = α(B(1, 2; 0,
1

2
)) = 1 · 1

2
=

1

2
.

From figure a) we see that

α(K(2)) = α(K(1)) + α(B(
2

2
,
3

2
;
2

4
,
2

3
))

=
1

2
+

1

2

(2

3
− 2

4

)

=
1

2
+

(1

3
− 1

4

)

=
1

2
+

1

3 · 4 .

From figure b) we see that

α(K(4)) = α(K(2)) + α(B(
4

4
,
5

4
;
4

6
,
4

5
)) + α(B(

6

4
,
7

4
;
4

8
,
4

7
))

= α(K(2)) +
1

4

(4

5
− 4

6

)
+

1

4

(4

7
− 4

8

)

= α(K(2)) +
(1

5
− 1

6

)
+

(1

7
− 1

8

)

=
1

1 · 2 +
1

3 · 4 +
1

5 · 6 +
1

7 · 8 .
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In general we will find that

α(K(2n)) =
2n∑

j=1

1

(2j − 1)(2j)
.

Now

0 ≤ α(S2
1(

[1

t

]
))− α(K(2n)) ≤ (1− 1

2
)µ(P2n),

i.e.

0 ≤ ln(2)−
2n∑

j=1

1

(2j − 1)(2j)
≤ 1

2n+1
.

Thus

ln(2) =
2n∑

j=1

1

(2j − 1)(2j)
with an error smaller than

1

2n+1
.

We can think of ln(2) as being given by the “infinite sum”

ln(2) =
1

1 · 2 +
1

3 · 4 +
1

5 · 6 +
1

7 · 8 + · · · . (5.82)
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1
1 2.

1
3 4.

1
5 6.

1
7 8.

1
9 10.

1
11 12.

1
13 14.

1
15 16.

ln(2) = 1

1·2
+ 1

3·4
+ 1

5·6
+ · · ·+

Equation (5.82) is sometimes called Mercator’s expansion for ln(2), after
Nicolaus Mercator, who found the result sometime near 1667 by an entirely
different method.

Brouncker’s calculation was published in 1668, but was done about ten
years earlier [22, pages 56-56].

Brouncker’s formula above is an elegant result, but it is not very useful for
calculating: it takes too many terms in the sum to get much accuracy. Today,
when a logarithm can be found by pressing a button on a calculator, we tend to
think of “ln(2)” as being a known number, and of Brouncker’s formula as giving

a “closed form” for the sum of the infinite series
1

1 · 2 +
1

3 · 4 +
1

5 · 6 + · · ·.
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5.6 Computer Calculation of Area

In this section we will discuss a Maple program for calculating approximate
values of Ab

af for monotonic functions f on the interval [a, b]. The programs
will be based on formulas discussed in theorem 5.40.

Let f be a decreasing function from the interval [a, b] to R≥0, and let
P = {x0, x1, · · · , xn} be a partition of [a, b]. We know that

α(Ib
a(f, P )) ≤ Ab

af ≤ α(Ob
a(f, P )),

where

α(Ib
a(f, P )) =

n∑

i=1

(xi − xi−1)f(xi), (5.83)

α(Ob
a(f, P )) =

n∑

i=1

(xi − xi−1)f(xi−1). (5.84)

Let V b
a (f, P ) be the average of α(Ib

a(f, P )) and α(Ob
a(f, P )), so

V b
a (f, P ) =

α(Ib
a(f, P )) + α(Ob

a(f, P ))

2
=

n∑

i=1

(xi − xi−1) · f(xi) + f(xi−1)

2
.

Now (xi − xi−1) · f(xi) + f(xx−1)

2
represents the area of the trapezoid with

vertices (xi−1, 0), (xi−1, f(xi−1)), (xi, f(xi)) and (xi, 0), so V b
a (f, P ) represents

the area under the polygonal line obtained by joining the points (xi−1, f(xi−1))
and (xi, f(xi)) for 1 ≤ i ≤ n.
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HHHHHHHH

(xi−1, 0) (xi, 0)

(xi, f(xi))

(xi−1, f(xi−1))

V b

a
(f, P )

In the programs below, leftsum(f,a,b,n) calculates

n∑

j=1

f

(
a + (j − 1)

(b− a

n

))(b− a

n

)
=

(b− a

n

) n∑

j=1

f

(
a + (j − 1)

(b− a

n

))
,

which corresponds to (5.84) when P is the regular partition of [a, b] into n
equal subintervals, and rightsum(f,a,b,n) calculates

n∑

j=1

f

(
a + j

(b− a

n

))(b− a

n

)
=

(b− a

n

) n∑

j=1

f

(
a + j

(b− a

n

))
.

which similarly corresponds to (5.83). The command average(f,a,b,n) cal-
culates the average of leftsum(f,a,b,n) and rightsum(f,a,b,n).

The equation of the unit circle is x2 + y2 = 1, so the upper unit semicircle
is the graph of f where f(x) =

√
1− x2. The area of the unit circle is 4 times

the area of the portion of the circle in the first quadrant, so

π = 4A1
0[
√

1− t2].

Also

ln(2) = A2
1

[1

t

]
.
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My routines and calculations are given below. Here leftsum, rightsum
and average are all procedures with four arguments, f,a,b, and n.

f is a function.
a and b are the endpoints of an interval.
n is the number of subintervals in a partition of [a,b].
The functions F and G are defined by F(x) = 1/x and G(x) =

√
1− x2. The

command

average(F,1.,2.,10000);

estimates ln(2) by considering the regular partition of [1, 2] into 10000 equal
subintervals. and the command

4*average(G,0.,1.,2000);

estimates π by considering the regular partition of [0, 1] into 2000 equal subin-
tervals.

> leftsum :=

> (f,a,b,n) -> (b-a)/n*sum(f( a +((j-1)*(b-a))/n),j=1..n);

leftsum := ( f, a, b, n ) →
( b− a )




n∑

j=1

f

(
a +

(j − 1) ( b− a )

n

)


n

> rightsum :=

> (f,a,b,n) -> (b-a)/n*sum(f( a +(j*(b-a))/n),j=1..n);

rightsum := ( f, a, b, n ) →
( b− a )




n∑

j=1

f

(
a +

j ( b− a )

n

)


n

> average :=

> (f,a,b,n) -> (leftsum(f,a,b,n) + rightsum(f,a,b,n))/2;

average := ( f, a, b, n ) → 1

2
leftsum( f, a, b, n ) +

1

2
rightsum( f, a, b, n )

> F := t -> 1/t;

F := t → 1

t
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> leftsum(F,1.,2.,10000);

.6931721810

> rightsum(F,1.,2.,10000);

.6931221810

> average(F,1.,2.,10000);

.6931471810

> ln(2.);

.6931471806

> G := t -> sqrt(1-t^2);

G := t → sqrt( 1− t2 )

> 4*leftsum(G,0.,1.,2000);

3.142579520

> 4*rightsum(G,0.,1.,2000);

3.140579522

> 4*average(G,0.,1.,2000);

3.141579521

> evalf(Pi);

3.141592654

Observe that in these examples, average yields much more accurate approxi-
mations than either leftsum or rightsum.


