
Chapter 4

Analytic Geometry

4.1 Addition of Points

From now on I will denote points in the plane by lower case boldface letters,
e.g. a,b, · · ·. If I specify a point a and do not explicitly write down its
components, you should assume a = (a1, a2), b = (b1, b2), · · · ,k = (k1, k2),
etc. The one exception to this rule is that I will always take

x = (x, y).

4.1 Definition (Addition of Points) If a and b are points in R2 and
t ∈ R, we define

a + b = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2)

a− b = (a1, a2)− (b1, b2) = (a1 − b1, a2 − b2)

ta = t(a1, a2) = (ta1, ta2).

If t 6= 0, we will write
a

t
for

1

t
a; i.e.,

a

t
=

(
a1

t
,
b1

t

)
. We will abbreviate (−1)a

by −a, and we will write 0 = (0, 0).

4.2 Theorem. Let a, b, c be arbitrary points in R2 and let s, t be arbitrary
numbers. Then we have:

68
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Addition is commutative,

a + b = b + a.

Addition is associative,

(a + b) + c = a + (b + c).

We have the following law that resembles the associative law for multipli-
cation:

s(ta) = (st)a.

We have the following distributive laws:

(s + t)a = sa + ta, (4.3)

s(a + b) = sa + sb. (4.4)

Also,
1a = a, 0a = 0 and a + (−a) = 0.

All of these properties follow easily from the corresponding properties of
real numbers. I will prove the commutative law and one of the distributive
laws, and omit the remaining proofs.

Proof of Commutative Law: Let a, b be points in R2. By the commutative
law for R,

a1 + b1 = b1 + a1 and a2 + b2 = b2 + a2.

Hence

a + b = (a1, a2) + (b1, b2) = (a1 + b1, a2 + b2) = (b1 + a1, b2 + a2)

= (b1, b2) + (a1, a2) = b + a.

and hence a + b = b + a.

Proof of (4.3): Let s, t ∈ R and let a ∈ R2. By the distributive law for R we
have

(s + t)a1 = sa1 + ta1 and (s + t)a2 = sa2 + ta2.

Hence,

(s + t)a = (s + t)(a1, a2) = ((s + t)a1, (s + t)a2) = (sa1 + ta1, sa2 + ta2)

= (sa1, sa2) + (ta1, ta2) = s(a1, a2) + t(a1, a2)

= sa + ta,
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i.e,
(s + t)a = sa + ta. |||

4.5 Notation (Lines in R2.) If a,b are distinct points in R2, I will denote
the (infinite) line through a and b by ab, and I will denote the line segment
joining a to b by [ab]. Hence [ab] = [ba].

Remark: Let a, b be points in R2 such that 0, a and b are not all in a
straight line. Then a + b is the vertex opposite 0 in the parallelogram whose
other three vertices are b, 0 and a.

a+b
b

a

Proof: In this proof I will suppose a1 6= 0 and b1 6= 0, so that neither of 0a,0b
is a vertical line. (I leave the other cases to you.) The slope of line 0a is
a2 − 0

a1 − 0
=

a2

a1

, and the slope of b(a + b) is
(a2 + b2)− b2

(a1 + b1)− b1

=
a2

a1

. Thus the lines

0a and b(a + b) are parallel.

The slope of line 0b is
b2 − 0

b1 − 0
=

b2

b1

, and the slope of a(a + b) is

(a2 + b2)− a2

(a1 + b1)− a1

=
b2

b1

. Thus the lines 0b and a(a + b) are parallel. It follows

that the figure 0a(a + b)b is a parallelogram, i.e., a + b is the fourth vertex
of a parallelogram having 0, a, and b as its other vertices. |||
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b+c

a+b

b

a

0

x

a+b+c

c

4.6 Example. In the figure you should be able to see the parallelograms
defining a+b, (a+b) + c, b+ c and a+ (b+ c). Also you should be able to
see geometrically that (a + b) + c = a + (b + c). What is the point marked x
in the figure?

4.7 Exercise. In figure a), a, b, c, d, e, and f are the vertices of
a regular hexagon centered at 0. Sketch the points a + b, (a + b) + c,
(a + b + c) + d, (a + b + c + d) + e, and (a + b + c + d + e) + f as ac-
curately as you can.

f

b

d

figure  a

c

a

e a

c

e

figure  b

d

b

f=0

In figure b), a, b, c, d, e and f are the vertices of a regular hexagon with
f = 0. Sketch the points a+b, (a+b)+c, (a+b+c)+d, and (a+b+c+d)+e
as accurately as you can. (This problem should be done geometrically. Do not
calculate the coordinates of any of these points.)
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4.8 Example (Line segment) We will now give an analytical description
for a non-vertical line segment [ab], (a1 6= b1). Suppose first that a1 < b1. The
equation for the line through a and b is

y = a2 +
b2 − a2

b1 − a1

(x− a1).

Hence a point (x, y) is in [ab] if and only if there is a number x ∈ [a1, b1] such
that

(x, y) =
(
x, a2 +

b2 − a2

b1 − a1

(x− a1)
)

=
(
a1 + (x− a1), a2 +

b2 − a2

b1 − a1

(x− a1)
)

= (a1, a2) + (x− a1)(1,
b2 − a2

b1 − a1

)

= a +
x− a1

b1 − a1

(b1 − a1, b2 − a2)

= a +
x− a1

b1 − a1

(b− a).

Now

x ∈ [a1, b1] ⇐⇒ a1 ≤ x ≤ b1

⇐⇒ 0 ≤ x− a1 ≤ b1 − a1

⇐⇒ 0 ≤ x− a1

b1 − a1

≤ 1.

Thus
[ab] = {a + t(b− a) : 0 ≤ t ≤ 1}.

If b1 < a1 then

[ab] = [ba] = {b + t(a− b) : 0 ≤ t ≤ 1}
= {a + (1− t)(b− a) : 0 ≤ t ≤ 1}.

Now as t runs through all values in [0, 1], we see that 1 − t also takes on all
values in [0, 1] so we get the same description for [ab] when b1 < a1 as we do
when a1 < b1. Note that this description is exactly what you would expect
from the pictures, and that it also works for vertical segments.
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4.2 Reflections, Rotations and Translations

4.9 Definition (Reflections and Rotations.) We now define a family of
functions from R2 to R2. If (x, y) ∈ R2, we define

I(x, y) = (x, y) (Identity function.) (4.10)

H(x, y) = (x,−y) (Reflection of (x, y) about the horizontal axis.)

V (x, y) = (−x, y) (Reflection of (x, y) about the vertical axis.)

D+(x, y) = (y, x) (Reflection of (x, y) about the line y = x.)

D−(x, y) = (−y,−x) (Reflection of (x, y) about the line y = −x.)

Rπ/2(x, y) = (y,−x) (Clockwise rotation of (x, y) by π
2
.)

R−π
2
(x, y) = (−y, x) (Counter-clockwise rotation of (x, y) by π

2
.)

Rπ(x, y) = (−x,−y) Rotation by π. (4.11)

(y,−x)

(a,−d)

(y,x)

(x,−y)

(x,y)(−x,y)

(b,−d)

(b,d)

(b,−c)

(−x,−y)

(−y,−x)

(b,c)

(a,d)

(a,−c)

(a,c)
(−y,x)

Each of the eight functions just defined carries every box to another box
with the same area. You should be able to see from the picture that

H (B(a, b: c, d)) = B(a, b:−d,−c).

We can see this analytically as follows:

(x, y) ∈ B(a, b: c, d) ⇐⇒ a ≤ x ≤ b and c ≤ y ≤ d

⇐⇒ a ≤ x ≤ b and −d ≤ −y ≤ −c

⇐⇒ (x,−y) ∈ B(a, b:−d,−c)

⇐⇒ H(x, y) ∈ B(a, b:−d,−c).

I will usually omit the analytic justification in cases like this.
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Each of the eight functions described in definition 4.9 carries the square
B(−1, 1:−1, 1) to itself.

4.12 Definition (Symmetry of the square.) The eight functions defined
in equations (4.10)-(4.11) are called symmetries of the square.

4.13 Exercise. Let F be the set shown in the figure. On one set of axes
draw the sets F, Rπ/2(F ), R−π

2
(F ) and Rπ(F ) (label the four sets). On another

set of axes draw and label the sets V (F ), H(F ), D+(F ) and D−(F ).

F

4.14 Example. Let a ∈ R+ and let

S = {(x, y): 0 ≤ x ≤ √
a and 0 ≤ y ≤ x2}

T = {(x, y): 0 ≤ x ≤ a and
√

x ≤ y ≤ a}.

1/2(a    ,a)

S

1/2(a,a     )

T

From the picture it is clear that D+(S) = T . An analytic proof of this result
is as follows:

(x, y) ∈ S ⇐⇒ 0 ≤ x ≤ √
a and 0 ≤ y ≤ x2 (4.15)
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=⇒ 0 ≤ y ≤ x2 ≤ (
√

a)2 and 0 ≤ √
y ≤ x ≤ √

a

=⇒ 0 ≤ y ≤ a and
√

y ≤ x ≤ √
a (4.16)

⇐⇒ (y, x) ∈ T

⇐⇒ D+(x, y) ∈ T.

To show that D+(x, y) ∈ T=⇒(x, y) ∈ S, I need to show that (4.16) implies
(4.15). This follows because

0 ≤ y ≤ a and
√

y ≤ x ≤ √
a =⇒ 0 ≤ x ≤ √

a and 0 ≤ y = (
√

y)2 ≤ x2.

In exercise 2.18 you assumed that S and T have the same area. In general we
will assume that if S is a set and F is a symmetry of the square, then S and
F (S) have the same area. (Cf. Assumption 5.11.)

4.17 Definition (Translate of a set.) Let S be a set in R2 and let a ∈ R2.
We define the set a + S by

a + S = {a + s: s ∈ S}.

Sets of the form a + S will be called translates of S.

4.18 Example. The pictures below show some examples of translates.
Intuitively each translate of S has the same shape as S and each translate of
S has the same area as S.

0

+S

p
S

b
b+p

+S

a+p

b

a

a
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4.19 Example (Translates of line segments.) Let a,b ∈ R2. If c ∈ R2,
then

c + [ab] = c + {a + t(b− a) : 0 ≤ t ≤ 1}
= {c + a + t(b− a): 0 ≤ t ≤ 1}
= {c + a + t ((c + b)− (c + a)) : 0 ≤ t ≤ 1}
= [(c + a)(c + b)].

c+a

a
c

c+b0

b

In particular −a + [a,b] = [0,b − a], so any segment can be translated to a
segment with 0 as an endpoint.

4.20 Exercise. Let a, b, c, d, r, s be real numbers with a ≤ b and c ≤ d.
Show that

(r, s) + B(a, b: c, d) = B(?, ?; ?, ?)

if the four question marks are replaced by suitable expressions. Include some
explanation for your answer.

4.21 Exercise. Let P be the set shown in the figure below.

543

4

21

5

P3

2

1

a) Sketch the sets (−2,−2) + P and (4, 1) + P .
b) Sketch the sets Rπ

2
((1, 1) + P ) and (1, 1) + Rπ

2
(P ), where Rπ

2
is defined

as in definition 4.9
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4.3 The Pythagorean Theorem and Distance.

Even though you are probably familiar with the Pythagorean theorem, the
result is so important and non-obvious that I am including a proof of it.

4.22 Theorem (Pythagorean Theorem.) In any right triangle, the square
on the hypotenuse is equal to the sum of the squares on the two legs.

Proof: Consider a right triangle T whose legs have length b and c, and whose
hypotenuse has length a, and whose angles are φ and θ as shown in the figure.

c

b

aθ

φ

We have φ + θ = 90◦ since T is a right triangle.

2

W

R1

F

S

2

Z

S

H

φ

E

1

Q

R

b

S

c

c

A

b

XP

Y

b

B

c

R

b

b

C

c

c

b
figure  1

cD
figure  2

θ

φ

θ

L

φ

φ

θ

θ

G

K

Construct a square ABCD with sides of length b+c, and find points P,Q, R, S
dividing the sides of ABCD into pieces of sizes b and c as shown in figure 1.
Draw the lines PQ, QR, RS, and SP , thus creating four triangles congruent to
T (i.e., four right triangles with legs of length b and c). Each angle of PQRS
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is 180◦ − (φ + θ) = 180◦ − 90◦ = 90◦ so PQRS is a square of side a. The four

triangles in figure 1 each have area
1

2
bc, so

area(ABCD)− 4 · area(T ) = a2 (4.23)

or
(b + c)2 − 2bc = a2

and hence
b2 + c2 = a2 ||| (4.24)

The proof just given uses a combination of algebra and geometry. I will
now give a second proof that is completely geometrical.

Construct a second square WXY Z with sides of length b + c, and mark
off segments WE and WF of length c as shown in figure 2. Then draw
EK perpendicular to WX and let EK intersect ZY at G, and draw FL
perpendicular to WZ and let FL intersect XY at H. Then EGZ is a right
angle, since the other angles of the quadrilateral WEGZ are right angles.
Similarly angle FHX is a right angle. Thus WEGZ is a rectangle so ZG = c
and similarly WFHX is a rectangle and XH = c. Moreover EG and FH are
perpendicular since EG‖WZ and FH‖WX. Thus the region labeled S1 is a
square with side c and the region labeled S2 is a square with side b.

In figure 2 we have area(R1) = area(R2) = 2area(T ), and hence

area(WXY Z)− 4 · area(T ) = b2 + c2. (4.25)

We have area(ABCD) = area(WXY Z) since ABCD and WXY Z are both
squares with side b + c. Hence from equations (4.23) and (4.25) we see that

a2 = b2 + c2. |||

Although the theorem we just proved is named for Pythagoras (fl. 530–
510 B.C) , it was probably known much earlier. There is evidence that it was
known to the Babylonians circa 1000 BC[27, pp 118-121]. Legend has it that

Emperor Yǔ[circa 21st century B.C.] quells floods, he deepens
rivers and streams, observes the shape of mountains and valleys,
surveys the high and low places, relieves the greatest calamities
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and saves the people from danger. He leads the floods east into
the sea and ensures no flooding or drowning. This is made possible
because of the Gōugǔ theorem . . .[47, page 29].

¶
¶

¶
¶

¶
¶

¶¶

Gōugǔ shape

“Gōugǔ” is the shape shown in the figure, and the Gōugǔ theorem is our
Pythagorean theorem. The prose style here is similar to that of current day
mathematicians trying to get congress to allocate funds for the support of
mathematics.

Katyayana(c. 600 BC or 500BC??) stated the general theorem:

The rope [stretched along the length] of the diagonal of a rectan-
gle makes an [area] which the vertical and horizontal sides make
together.[27, page 229]

4.26 Theorem (Distance formula.) If a and b are points in R2 then the
distance from a to b is

d(a,b) =
√

(a1 − b1)2 + (a2 − b2)2.

Proof: Draw the vertical line through a and the horizontal line through b.
These lines intersect at the point p = (a1, b2). The length of [ap] is |a2 − b2|
and the length of [pb] is |a1 − b1| and [ab] is the hypotenuse of a right angle
with legs [ap] and [pb].

½
½

½
½

½
½

½½

½
½

½
½

½
½

½½

(b1, b2) (a1, b2) (a1, a2)

(a1, a2) (a1, b2) (b1, b2)
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By the Pythagorean theorem,

(length([ab]))2 = (a1 − b1)
2 + (a2 − b2)

2

so length([a,b]) =
√

(a1 − b1)2 + (a2 − b2)2. |||
4.27 Notation (d(a,b), distance(a,b)) If a and b are points in R2, I will

denote the distance from a to b by either distance(a,b) or by d(a,b).

4.28 Definition (Circle.) Let p = (a, b) be a point in R2, and let r ∈ R+.
The circle with center p and radius r is defined to be

C(p, r) = {(x, y) ∈ R2: d((x, y), (a, b)) = r}
= {(x, y) ∈ R2:

√
(x− a)2 + (y − b)2 = r}

= {(x, y) ∈ R2: (x− a)2 + (y − b)2 = r2}.

pC( ,r)

r

p

The equation
(x− a)2 + (y − b)2 = r2

is called the equation of the circle C(p, r). The circle C((0, 0), 1) is called the
unit circle.

We will now review the method for solving quadratic equations.

4.29 Theorem (Quadratic formula.) Let A, B, and C be real numbers
with A 6= 0.

If B2− 4AC < 0, then the equation Ax2 + Bx + C = 0 has no solutions in
R.

If B2−4AC ≥ 0, then the set of solutions of the equation Ax2+Bx+C = 0
is {−B ±√B2 − 4AC

2A

}
. (4.30)

The set (4.30) contains one or two elements, depending on whether B2− 4AC
is zero or positive.)
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Proof: Let A,B,C be real numbers with A 6= 0. Let x ∈ R. Then

Ax2 + Bx + C = 0 ⇐⇒ A
(
x2 +

Bx

A

)
= −C

⇐⇒ A
(
x2 +

Bx

A
+

B2

4A2

)
= −C +

AB2

4A2
= −C +

B2

4A

⇐⇒ A
(
x +

B

2A

)2
=
−4AC + B2

4A

⇐⇒
(
x +

B

2A

)2
=

B2 − 4AC

4A2

Hence Ax2+Bx+C = 0 has no solutions unless B2−4AC ≥ 0. If B2−4AC ≥ 0,
then the solutions are given by

(
x +

B

2A

)
=
±√B2 − 4AC

2A

i.e.,

x =
−B ±√B2 − 4AC

2A
. |||

4.31 Example. Describe the set C((0, 0), 6) ∩ C((4, 4), 2).

C((4,4),2)

The sketch suggests that this set will consist of two points in the first quadrant.
Let (x, y) be a point in the intersection. Then

x2 + y2 = 36 (4.32)

and

(x− 4)2 + (y − 4)2 = 4, i.e. x2 + y2 − 8x− 8y + 28 = 0. (4.33)
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It follows that 36− 8x− 8y + 28 = 0, or 8x + 8y − 64 = 0 or

y = 8− x. (4.34)

(The line whose equation is y = 8−x is shown in the figure. We’ve proved that
the intersection is a subset of this line.) Replace y by 8− x in equation (4.33)
to obtain

x2 + (8− x)2 − 8x− 8(8− x) + 28 = 0

i.e.,
x2 + 64− 16x + x2 − 8x− 64 + 8x + 28 = 0

i.e.,
2x2 − 16x + 28 = 0

i.e.,
x2 − 8x + 14 = 0.

By the quadratic formula, it follows that

x =
8±√64− 56

2
=

8± 2
√

2

2
= 4±

√
2.

By equation (4.34)
y = 8− x = 4∓

√
2.

We have shown that if (x, y) ∈ C((0, 0), 6) ∩ C((4, 4), 2), then
(x, y) ∈ {(4 +

√
2, 4−√2), (4−√2, 4 +

√
2)}. It is easy to verify that each of

the two calculated points satisfies both equations (4.32) and (4.33) so

C((0, 0), 6) ∩ C((4, 4), 2) = {(4 +
√

2, 4−
√

2), (4−
√

2, 4 +
√

2)}.


