
Chapter 0

Introduction

An Overview of the Course

In the first part of these notes we consider the problem of calculating the areas
of various plane figures. The technique we use for finding the area of a figure
A will be to construct a sequence In of sets contained in A, and a sequence
On of sets containing A, such that

1. The areas of In and On are easy to calculate.

2. When n is large then both In and On are in some sense “good approxi-
mations” for A.

Then by examining the areas of In and On we will determine the area of A.
The figure below shows the sorts of sets we might take for In and On in the case
where A is the set of points in the first quadrant inside of the circle x2+y2 = 1.
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In this example, both of the sets In and On are composed of a finite number

of rectangles of width
1

n
, and from the equation of the circle we can calcu-

late the heights of the rectangles, and hence we can find the areas of In and

On. From the third figure we see that area(On)− area(In) =
1

n
. Hence if

n = 100000, then either of the numbers area(In) or area(On) will give the
area of the quarter-circle with an error of no more than 10−5. This calcula-
tion will involve taking many square roots, so you probably would not want
to carry it out by hand, but with the help of a computer you could easily
find the area of the circle to five decimals accuracy. However no amount of
computing power would allow you to get thirty decimals of accuracy from this
method in a lifetime, and we will need to develop some theory to get better
approximations.

In some cases we can find exact areas. For example, we will show that the
area of one arch of a sine curve is 2, and the area bounded by the parabola

y = x2 and the line y = 1 is
4

3
.

π

A

y = 1

B

y = sin(x) area(A) = 2 y = x2 area(B) = 4

3

However in other cases the areas are not simply expressible in terms of
known numbers. In these cases we define certain numbers in terms of areas,
for example we will define

π = the area of a circle of radius 1,

and for all numbers a > 1 we will define

ln(a) = the area of the region bounded by the curves

y = 0, xy = 1, x = 1, and x = a.
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We will describe methods for calculating these numbers to any degree of ac-
curacy, and then we will consider them to be known numbers, just as you
probably now think of

√
2 as being a known number. (Many calculators cal-

culate these numbers almost as easily as they calculate square roots.) The
numbers ln(a) have many interesting properties which we will discuss, and
they have many applications to mathematics and science.

Often we consider general classes of figures, in which case we want to find
a simple formula giving areas for all of the figures in the class. For example
we will express the area of the ellipse bounded by the curve whose equation is

x2

a2
+

y2

b2
= 1

by means of a simple formula involving a and b.

−b

−a

b

a

The mathematical tools that we develop for calculating areas, (i.e. the
theory of integration) have many applications that seem to have little to do
with area. Consider a moving object that is acted upon by a known force
F (x) that depends on the position x of the object. (For example, a rocket
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propelled upward from the surface of the moon is acted upon by the moon’s
gravitational attraction, which is given by

F (x) =
C

x2
,

where x is the distance from the rocket to the center of the moon, and C is
some constant that can be calculated in terms of the mass of the rocket and
known information.) Then the amount of work needed to move the object
from a position x = x0 to a position x = x1 is equal to the area of the region
bounded by the lines x = x0, x = x1, y = 0 and y = F (x).

y=F(x)

R+HR

Work is represened by an area

In the case of the moon rocket, the work needed to raise the rocket a height
H above the surface of the moon is the area bounded by the lines x = R,

x = R + H, y = 0, and y =
C

x2
, where R is the radius of the moon. After we

have developed a little bit of machinery, this will be an easy area to calculate.
The amount of work here determines the amount of fuel necessary to raise the
rocket.

Some of the ideas used in the theory of integration are thousands of years
old. Quite a few of the technical results in the calculations presented in these
notes can be found in the writings of Archimedes(287–212 B.C.), although the
way the ideas are presented here is not at all like the way they are presented
by Archimedes.

In the second part of the notes we study the idea of rate of change. The
ideas used in this section began to become common in early seventeenth cen-
tury, and they have no counterpart in Greek mathematics or physics. The
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problems considered involve describing motions of moving objects (e.g. can-
non balls or planets), or finding tangents to curves. An important example of
a rate of change is velocity. The problem of what is meant by the velocity of
a moving object at a given instant is a delicate one. At a particular instant of
time, the object occupies just one position in space. Hence during that instant
the object does not move. If it does not move, it is at rest. If it is at rest,
then its velocity must be 0(?)

The ability to find tangents to curves allows us to find maximum and
minimum values of functions. Suppose I want to design a tin can that holds
1000 cc., and requires a minimum amount of tin. It is not hard to find a
function S such that for each positive number h, the total surface area of a
can with height h and volume 1000 is equal to S(h). The graph of S has the
general shape shown in the figure, and the minimum surface area corresponds
to the height h0 shown in the figure. This value h0 corresponds to the point
on the graph of S where the tangent line is horizontal, i.e. where the slope
of the tangent is zero. From the formula for S(h) we will be able to find a
formula for the slope of the tangent to the graph of S at an arbitrary height
h, and to determine when the slope is zero. Thus we will find h0.

y=S(h)

0h h

y

h  is too  small

h

Badly  designed  cans

h  is too  large

h

The tool for solving rate problems is the derivative, and the process of
calculating derivatives is called differentiation. (There are two systems of
notation working here. The term differential was introduced by Gottfried
Leibniz(1646–1716) to describe a concept that later developed into what Joseph
Louis Lagrange(1736–1813) called the derived function. From Lagrange we get
our word derivative, but the older name due to Leibniz is still used to describe
the general theory – from which differentials in the sense of Leibniz have been
banished.) The idea of derivative (or fluxion or differential) appears in the
work of Isaac Newton(1642–1727) and of Leibniz, but can be found in various
disguises in the work of a number of earlier mathematicians.
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As a rule, it is quite easy to calculate the velocity and acceleration of a
moving object, if a formula for the position of the object at an arbitrary time
is known. However usually no such formula is obvious. Newton’s Second Law
states that the acceleration of a moving object is proportional to the sum of
the forces acting on the object, divided by the mass of the object. Now often
we have a good idea of what the forces acting on an object are, so we know
the acceleration. The interesting problems involve calculating velocity and
position from acceleration. This is a harder problem than the problem going
in the opposite direction, but we will find ways of solving this problem in
many cases. The natural statements of many physical laws require the notion
of derivative for their statements. According to Salomon Bochner

The mathematical concept of derivative is a master concept, one of
the most creative concepts in analysis and also in human cognition
altogether. Without it there would be no velocity or acceleration
or momentum, no density of mass or electric charge or any other
density, no gradient of a potential and hence no concept of potential
in any part of physics, no wave equation; no mechanics no physics,
no technology, nothing[11, page 276].

At the time that ideas associated with differentiation were being devel-
oped, it was widely recognized that a logical justification for the subject was
completely lacking. However it was generally agreed that the results of the
calculations based on differentiation were correct. It took more than a cen-
tury before a logical basis for derivatives was developed, and the concepts of
function and real number and limit and continuity had to be developed before
the foundations could be described. The story is probably not complete. The
modern “constructions” of real numbers based on a general theory of “sets”
appear to me to be very vague, and more closely related to philosophy than to
mathematics. However in these notes we will not worry about the foundations
of the real numbers. We will assume that they are there waiting for us to use,
but we will need to discuss the concepts of function, limit and continuity in
order to get our results.

The fundamental theorem of the calculus says that the theory of integration,
and the theory of differentiation are very closely related, and that differentia-
tion techniques can be used for solving integration problems, and vice versa.
The fundamental theorem is usually credited to Newton and Leibniz indepen-
dently, but it can be found in various degrees of generality in a number of
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earlier writers. It was an idea floating in the air, waiting to be discovered at
the close of the seventeenth century.

Prerequisites

The prerequisites for this course are listed in appendix C. You should look
over this appendix, and make sure that everything in it is more or less familiar
to you. If you are unfamiliar with much of this material, you might want to
discuss with your instructor whether you are prepared to take the course. It
will be helpful to have studied some trigonometry, but all of the trigonometry
used in these notes will be developed as it is needed.

You should read these notes carefully and critically. There are quite a
few cases where I have tried to trick you by giving proofs that use unjustified
assumptions. In these cases I point out that there is an error after the proof is
complete, and either give a new proof, or add some hypotheses to the statement
of the theorem. If there is something in a proof that you do not understand,
there is a good chance that the proof is wrong.

Exercises and Entertainments

The exercises are an important part of the course. Do not expect to be able
to do all of them the first time you try them, but you should understand them
after they have been discussed in class. Some important theorems will be
proved in the exercises. There are hints for some of the questions in appendix
A, but you should not look for a hint unless you have made some effort to
answer a question.

Sections whose titles are marked by an asterisk (e.g. section 2.6) are not
used later in the notes, and may be omitted. Hovever they contain really neat
material, so you will not want to omit them.

In addition to the exercises, there are some questions and statements with
the label “entertainment”. These are for people who find them entertaining.
They require more time and thought than the exercises. Some of them are
more metaphysical than mathematical, and some of them require the use of a
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computer or a programmable calculator. If you do not find the entertainments
entertaining, you may ignore them. Here is one to start you off.

1 Entertainment (Calculation of π.) . The area of a circle of radius 1 is
denoted by π. Calculate π as accurately as you can.

Archimedes showed that π is half of the circumference of a circle of radius 1.
More precisely, he showed that the area of a circle is equal to the area of
a triangle whose base is equal to the circumference of the circle, and whose
altitude is equal to the radius of the circle. If we take a circle of radius 1, we
get the result stated.

circumference

rr

You should assume Archimedes’ theorem, and then entertainment 1 is equiv-
alent to the problem of calculating the circumference of a circle as accurately
as you can. An answer to this problem will be a pair of rational numbers b
and c, together with an argument that b < π and π < c. It is desired to make
the difference c− b as small as possible.

This problem is very old. The Rhind Papyrus[16, page 92] (c. 1800 B.C.?)
contains the following rule for finding the area of a circle:

RULE I: Divide the diameter of the circle into nine equal parts, and form a
square whose side is equal to eight of the parts. Then the area of the square
is equal to the area of the circle.

The early Babylonians (1800-1600BC) [38, pages 47 and 51] gave the fol-
lowing rule:
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RULE II: The area of a circle is 5/60th of the square of the circumference of
the circle.

Archimedes (287–212 B.C.) proved that the circumference of a circle is
three times the diameter plus a part smaller than one seventh of the diam-
eter, but greater than 10/71 of the diameter[3, page 134]. In fact, by using
only elementary geometry, he gave a method by which π can be calculated
to any degree of accuracy by someone who can calculate square roots to any
degree of accuracy. We do not know how Archimedes calculated square roots,
but people have tried to figure out what method he used by the form of his
approximations. For example he says with no justification that

265

153
<
√

3 <
1351

780

and √
3380929 < 1838

9

11
.

By using your calculator you can easily verify that these results are correct.
Presumably when you calculate π you will use a calculator or computer to
estimate any square roots you need. This immediately suggests a new problem.

2 Entertainment (Square root problem.) Write, or at least describe, a
computer program that will calculate square roots to a good deal of accuracy.
This program should use only the standard arithmetic operations and the
constructions available in all computer languages, and should not use any
special functions like square roots or logarithms. An answer to this question
must include some sort of explanation of why the method works.

Zǔ Chōngzh̄ı (429–500 A.D.) stated that π is between 3.1415926 and 3.1415927,
and gave 355/113 as a good approximation to π.[47, page 82]

Here is a first approximation to π. Consider a circle of radius 1 with
center at (0, 0), and inscribe inside of it a square ABCD of side s with ver-
tices at (1, 0), (0, 1), (−1, 0) and (0,−1). Then by the Pythagorean theorem,
s2 = 12 + 12 = 2. But s2 is the area of the square ABCD, and since ABCD
is contained inside of the circle we have
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W

B

DZ

C

Y X

A

2 = Area of inscribed square < Area of circle = π.

Consider also the circumscribed square WXY Z with horizontal and vertical
sides. This square has side 2, and hence has area 4. Thus, since the circle is
contained in WXY Z,

π = area of circle < area(WXY Z) = 4.

It now follows that 2 < π < 4.

A number of extraordinary formulas for π are given in a recent paper on
How to Compute One Billion Digits of Pi[12]. One amazing formula given in
this paper is the following result

1

π
=

√
8

9801

∞∑

n=0

(4n)!

(n!)4

[1103 + 26390n]

3964n
,

which is due to S. Ramanujan(1887–1920)[12, p 201,p 215]. The reciprocal of
the zeroth term of this sum i.e.

9801

1103
√

8

gives a good approximation to π (see exercise 4).

3 Exercise. The formulas described in RULES I and II above each de-
termine an approximate value for π. Determine the two approximate values.
Explain your reasoning.

4 Exercise. Use a calculator to find the value of

9801

1103
√

8
,

and compare this with the correct value of π, which is 3.14159265358979 . . ..


