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Abstract

We introduce a method for visualizing evolutionary activity of genotypes. Following a

proposal of Bedau and Packard [13], we de�ne a genotype's evolutionary activity in terms

of the history of its concentration in the evolving population. To visualize this evolutionary

activity we graph the distribution of evolutionary activity in the population of genotypes as

a function of time. Adaptively signi�cant genotypes trace a salient line or \wave" in these

graphs. The quality of these waves indicates a variety of evolutionary phenomena, such as

competitive exclusion, neutral variation, and random genetic drift. We apply this method in

an evolutionary model of self-replicating assembly language programs competing for room in

a two-dimensional space. Comparison with �tness graphs and with a non-adaptive analogue

of this model shows how this method highlights adaptively signi�cant events.

Keywords: adaptation, evolutionary activity, visualization, neutral variation, random

genetic drift, genotypes.
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1 How to Visualize Evolutionary Activity

Although it is commonly accepted that the process of adaptation produces much of the order and

functionality evident in complex systems [26, 21, 18, 19, 22], it is often di�cult to distinguish

adaptive change in a system from other evolutionary phenomena such as random genetic drift

[20, 27, 15, 38]. The problem is not a shortage of data but the inability to highlight the relevant

data. Those studying arti�cial models have the luxury of being able to collect virtually complete

data; aside from storage space, only imagination limits what kinds of data are gathered. But this

compounds rather than alleviates the problem of �ltering this data to �nd a picture that reveals

a system's signi�cant adaptive phenomena. The study of evolutionary dynamics in natural and

arti�cial systems dearly needs an e�ective method for visualizing adaptive phenomena.

We here introduce a method for visualizing adaptive phenomena involving genotypes, and we

illustrate this method by applying it to the evolutionary dynamics generated by a simple model

of evolving machine language programs. Our visualization method is a generalization of the

way Bedau and Packard visualized and quanti�ed what they called \evolutionary activity" [13].

Bedau and Packard focused on activity at the level of individual alleles, and they illustrated their

visualization method only brie
y. The primary novelties of the present paper are to apply the

approach at a new level of analysis|whole genotypes|and then to give detailed analyses of the

adaptive phenomena revealed in a series of speci�c cases of evolution. These analyses disclose the

characteristic signatures of a variety of evolutionary phenomena involving genotypes, including

competitive interactions among genotypes, clouds of neutral variant genotypes acting in concert,

and random genetic drift among neutral variant genotypes.

The fundamental idea behind evolutionary activity of genotypes is to identify those genotypes

that make a di�erence in the evolutionary process. Generally we consider a genotype to \make

a di�erence" if it continues to be active in the evolving system. Here we measure evolutionary

activity of genotypes in the context of the Evita model, a simple arti�cial system which consists

of evolving assembly language programs competing for space, akin to Tierra [30]. In this model

the relative adaptive signi�cance of a genotype is re
ected by its concentration in the population.

Relatively well adapted genotypes will have a relatively high concentration in the population,

and relatively poorly adapted genotypes will be correspondingly scarce. Thus, we here de�ne the

evolutionary activity ai(t) of the i
th genotype at time t as its concentration integrated over the

time period from its origin up to t, provided it exists:

ai(t) =

8<
:
R
t

0
ci(t)dt if genotype i exists at t

0 otherwise
; (1)

where ci(t) is the concentration of the ith genotype at t, i.e., the fraction of the population that

has the ith genotype. A genotype's evolutionary activity (or \activity", for short) re
ects the

3



changes in its adaptedness (relative to the other genotypes in the population) throughout its

history in the system.

Concentration might be an inappropriate measure of a genotype's adaptive signi�cance in

some contexts; in this case, the de�nition of evolutionary activity would need to operationalize

adaptive signi�cance in some other way. Furthermore, when concentration is impractical to

measure the de�nition of evolutionary activity must be appropriately modi�ed. For example, since

concentration data is generally unavailable for taxonomic families in the fossil record, evolutionary

activity for fossil families could be de�ned by integrating a family's presence in the fossil record

[11]. The key in each case is to increment a genotype's activity counter ai over time by some

method that re
ects the genotype's relative adaptive signi�cance. Then the integration in Eq. 1

makes the activity counter ai re
ect the history of the genotype's adaptive signi�cance.

To summarize the evolutionary activity of all the genotypes throughout the history of evolution

in a system, we de�ne an activity distribution function, M(t; a), as follows:

M(t; a) =

8<
:

1 if there exists i s.t. ai(t) = a

0 otherwise
: (2)

The activity distribution function combines information about how the activity ai(t) of every

genotype i in the population changes over time.1 Our visualization method is simply to graph

these activity distribution functions.

Evolutionarily signi�cant genotypes trace a salient line or \wave" in activity distribution

graphs. Comparing evolutionary activity waves within or between systems can show how these

evolutionary phenomena vary as a function of time, space, mutation rate, mode of selection, or

other factors. In addition, the data displayed in this visualization method can be quanti�ed

with various statistics [13, 7, 11, 12], thus enabling evolutionary activity in various arti�cial and

natural systems to be directly compared [11, 12]. And since one can argue that the nature of life

is intrinsically connected with adaptive evolutionary activity [8, 9], this visualization method can

put discussions of the nature of life on a vivid, empirical footing.

In the rest of this paper, after describing the evolutionary model used here, we explain how to

interpret activity distribution functions, examine the adaptive phenomena evident in the activity

distribution functions from a handful of individual runs of the model, and �nally indicate the

generality of this method. Although we illustrate the visualization method in the Evita model

here, the method applies directly to any other system with an evolving distribution of genotypes.

1This M(t; a) distribution function omits some of the information re
ected in the original de�nition [13]. The

strict analogue of the original de�nition would re
ect the number of genotypes that have a given activity value at

a given time, as follows:

N(t; a) = #fi : ai(t) = ag; (3)

where #f�g denotes set cardinality. For present purposes the simpler de�nition in the text su�ces.
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Comparing our detailed visualization of evolutionary activity of genotypes with the original ap-

plication of this method to individual alleles [13] should help to convey how easily this method

can be adapted to display and quantify evolutionary activity at a variety of di�erent levels in a

variety of di�erent kinds of evolving systems.

2 The Evita Model and a Non-Adaptive Analogue

The Evita model consists of a population of self-replicating strings of code competing for space,

akin to Tierra [30] and Avida [3]. As in Tierra and Avida, programs in a customized assembly

language carry out their own replication while subject to mutation. Unlike Tierra but like Avida,

these programs interact only with their nearest neighbors on a two dimensional grid, so the

spread of information through the population depends the size of the system. But Evita is much

simpler than Tierra and Avida because it disallows code parasitism and thus blocks parasitism

and more complicated interactions (e.g., hyperparasitism and code pirating), so Evita's dynamics

are especially easy to understand. We use such a simple system here in order to provide an

especially simple and clear illustration of our visualization method. In addition, understanding

Evita should help illuminate more complicated analogues like Tierra and Avida. Indeed, the

visualization method we introduce here would be an especially useful tool to use for studying

these more complicated systems.

Evita is initialized with a single human-written program placed randomly on an N �M grid.

This program then executes and thereby reproduces. Each o�spring is placed within a small

radius of the parent program on the grid, and they then also start executing. When a parent

program can �nd no unoccupied grid locations nearby, the system chooses randomly from the

oldest of its neighbors, \kills" that neighbor, and places the o�spring there. No other interaction

between programs is permitted.

A time step of the model is a unit of time in which the program at each occupied grid spot

receives a �xed amount of the processor time. This time is allocated in a way that is unbiased

by position; hence, no organism can gain an advantage in its placement. In fact, the only real

advantage position can give is the relative �tness of the surrounding population: it may be that

the nearby creatures are less �t, e.g., reproduce more slowly, than the creature placed onto their

edge.

Mutations in this model are all point mutations, and they can fall on any existing program at

any time, as if caused by \cosmic-rays". The mutation rate is speci�ed in terms of the probability

per time step that each given \codon" or assembly language instruction in a genotype is mutated

to another instruction (chosen at random with equal probability from the entire instruction set).

Thus, the probability that a given program su�ers a mutation somewhere is proportional to its
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length. While the probability that a given program is mutated is independent of the size of the

population of programs, the probability that a mutation occurs somewhere in the population is

clearly proportional to the population size. Typically, mutation rates are speci�ed in terms of

10�5 mutations per time step: that is, a mutation rate of m would mean that a given codon

would mutate on average once every 10
5

m
time steps. This means, for example, that in a run with

1600 creatures with an average length of 30 instructions, a mutation rate of 1 would cause one

mutation somewhere in the population approximately every other time step. By increasing the

mutation rate to 200, the population generally dies out almost immediately because no successfully

reproducing creature can survive long enough.

The model has a clear biological analogy. The system represents a biological \soup", full of

self-replicating strands of code (similar to RNA). Survival is governed primarily by reproductive

speed, and evolution towards faster programs is the behavior usually exhibited. This kind of

system, while extremely simple, shows interesting behavior in certain regimes of mutation rate.

Many people have used Tierra, Avida, and similar systems to examine a variety of issues in

evolutionary dynamics [30, 31, 32, 33, 3, 25, 37, 16, 34, 4, 1, 2, 35, 17].

There is a clear distinction between genotype and phenotype in Evita. A given genotype is

de�ned simply as a string of assembly language code. If two programs di�er in even one instruc-

tion they have di�erent genotypes. On the other hand, two programs might have exactly the

same behavior|the same phenotype|even though they have di�erent genotypes. The funda-

mental reason for this is that the only behavior of these programs, the only thing they \do", is

reproduce, so the only di�erence between the behavior of programs is the speed with which they

reproduce. Thus, any two genotypes which reproduce at the same rate, no matter how di�erent

their genotype, will have exactly the same phenotype.

The distinction between genotype and phenotype becomes important whenever there is a

piece of unused or unimportant code in the programs. For example, programs sometimes include

instructions that are never executed. This code can then be mutated freely without a�ecting

the operation of the program; multiple genotypes|without phenotype distinction and so with

exactly the same �tness|may then arise and appear as di�erent waves in the activity distribution

pictures.

Evita is explicitly designed so that the only way the programs interact is by competing for

space. On average, programs that reproduce faster will supplant their more slowly reproducing

neighbors. A program's rate of reproduction depends only on its genotype. Here, we measure the

rate at which a genotype reproduces, or its \fecundity", as we will call it, as the reciprocal of the

number of instructions that must be executed for an instance of that genotype to reproduce, on

average.2 So, a genotype that uses half as many instructions to reproduce as a second genotype

2In biology, fecundity is the number of o�spring that an individual produces. Note that our use of the term,

though related, is di�erent.
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will have twice the fecundity of the second. A genotype's fecundity is the sole determinant of

the expected rate at which programs with that genotype will produce o�spring. Most signi�cant

adaptive events in Evita are changes in fecundity, so for present purposes we simply equate a

genotype's �tness with its fecundity.3 To keep �tness values from being inconveniently small,

we de�ne �tness as 30 times fecundity. So, for example, a genotype that reproduces in 100

instructions has a fecundity of 0.01 and a �tness of 0.3.

Two types of genetic changes can a�ect a genotype's �tness: change in length and change in

algorithm. A change in length usually leads to a change in fecundity, that is, the time in which a

program produces one copy (on average). Since adaptation is driven mainly by fecundity, shorter

programs have a higher �tness, everything else being equal. In fact, a program typically gains a

four-time-step decrease in reproduction time for each codon that is \lost" from its length. But

things are not always equal when an algorithm changes. To see why, consider a typical copy loop:

nop0 # marker, the complement of the marker nop2

dec # decrement the (BX) register

copy # copy an instruction

ifnz # if register (BX) not zero,

jmp-b # jump back to the complement of the next marker

nop2 # marker

... # continued thread of execution

An archetypal copy-loop algorithm change is \unrolling the loop". Well known to assembly

language programmers, it involves reducing the time spent in a loop by reducing the loop overhead.

That is, by doing more within the actual loop code, one can reduce the number of times the loop

is iterated, thus reducing the overall amount of 
ow control instructions executed in the loop.

Here is a code example:

nop0 # an example of unrolling the loop

dec

copy

dec # this second copy procedure

copy # is contained in the loop

ifnz

jmp-b

nop2

3Shorter programs are more resistant to mutations (recall above), so a program's length in
uences its copy

�delity and, thus, its representation in future generations. Thus, fecundity is not a perfect measure of evolutionary

success. Nevertheless, at the mutation rates used here, evolutionary success overwhelmingly re
ects fecundity, so

our de�nition of �tness is more than adequate for present purposes.
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This can lead to a signi�cant increase in the speed of execution. Comparing the two examples,

above, in the �rst loop one copy is performed every four instructions, while in the second loop

two copies are performed in the space of six instructions, resulting in a 50% increase in speed

even though the second algorithm uses 30% more code.

We also de�ne a non-adaptive analogue of Evita, which di�ers from Evita only in that there

is no chance that a genotype's presence or concentration in the population is due to its adaptive

signi�cance. Nominal \programs" exist at locations at grid locations, reproduce and die. The

non-adaptive or \neutral" model has two parameters: the number of mutations in the population

per time step and the number of \programs" that reproduce per time step; each of these param-

eters can be either a single average value or a varying sequence of particular values. When the

neutral system is due to have a reproduction event, the self-reproducing \program" is chosen at

random from the population (with equal probability). When a \program" reproduces, its oldest

neighboring \program" dies and the new child occupies the newly emptied grid location. Each

\program" has a nominal \genotype" which its children inherit. Whenever a mutation strikes a

\program" it is assigned a new \genotype". The evolutionary dynamics in this neutral analogue is

reduced to a simple positive random walk in genotype space [4]. Genotypes arise and go extinct,

and their concentrations change over time, but the genotype dynamics is only weakly linked to

adaptation through the reproduction rate parameter determined by the normal model. None of

the dynamic of a genotype in the neutral analogue is due to that genotype's adaptive signi�cance,

for a genotype has no adaptive signi�cance whatsoever.

By recording mutation rates and reproduction rates from an actual Evita run, the non-adaptive

analogue can then be run with these parameters. The behavior of this neutral analogue allows

us to determine which aspects of the behavior of our original Evita run were due to adaptation

and which can be attributed to non-adaptive factors such as chance (e.g., random genetic drift)

or necessity (e.g., the system's underlying architecture). A series of related studies has similarly

exploited non-adaptive or \neutral" models [7, 11, 12].

3 Interpreting Activity Wave Diagrams

Graphs of activity distribution functions depict how evolutionary activity of the genotypes (on

the y-axis) varies as a function of time (on the x-axis). The most evident feature of such graphs is

the presence of myriad lines or waves (as we will call them), clearly evident in the �gures below.

Each wave corresponds to a single genotype and shows the variation over time of that genotype's

evolutionary activity.

It follows directly from the de�nition of evolutionary activity that the slope of a given geno-

type's activity wave at a given time is the same as the genotype's concentration in the population
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at that time. This explains why the waves invariably arise from the x-axis and thence move up-

wards and rightwards, as illustrated by the two isolated waves in Figure 1. When a new genotype

enters the population, a new wave will arise from the x-axis. As the genotype's concentration in

the population grows (or shrinks) over time, the slope of the wave increases (or decreases). When

the genotype �nally goes extinct, the slope of its wave falls to zero and the wave ends. In this

way, a genotype's activity wave re
ects its changing concentration throughout its history in the

population.

�gure 1 about here

Thus, an activity distribution function graph depicts the adaptive history of every genotype

in the population. The ancestral genotype always corresponds to the wave that arises out of the

origin. (See any of the activity distributions below.) When the ancestral genotype is driven to

extinction by another genotype, the ancestral wave ends as one or more new signi�cant waves

arise. Whenever one genotype drives another to extinction, a new wave arises as an earlier one

dies out. Multiple waves coexist in the activity diagram when multiple genotypes coexist in the

population, and genotypic interactions that a�ect genotype concentrations are visible as changes

in the slopes of waves. In general, the dominating genotype(s) during a given epoch of evolution

appear as dominating wave(s) during that period of the activity diagram.

Mutation rate has a direct and obvious impact on the evolutionary dynamics of genotypes,

and this e�ect is clearly evident in the genotype's activity wave diagrams. Comparing the activ-

ity waves in a series of runs in which all parameters are held constant except for mutation rate

shows how evolutionary activity phenomenology depends on mutation rate (Fig. 2). When the

mutation rate is set to zero, there is just one genotype|the ancestral one|so there is just one

wave with constant maximal slope (slope = 1). As soon as the mutation rate becomes positive,

new waves start to appear throughout the course of the runs, and their changing concentration

in the population causes the waves' slopes to vary. The rate at which new waves are generated is

proportional to the mutation rate, and the length of waves is inversely proportional to the muta-

tion rate, just as one would expect. (The choice of scale for x- or y-axes on graph of an activity

density function can obscure the density or length of activity waves, so these proportionalities

are not always evident.)

�gure 2 about here

When we compare activity wave diagrams from the normal Evita model and its neutral ana-

logue, we see a dramatic indication of how activity distribution functions highlight signi�cant
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adaptive events. To produce a neutral analogue that is directly comparable with a normal Evita

run, we recorded the reproduction rate per time step and the mutation rate per program per time

step from the normal Evita run and then ran the neutral model with these sequences of values as

input. Fig. 3 compares the activity distribution functions from these normal (top) and neutral

(bottom) runs, with the activity scale (y-axis) in these two plots set to be roughly comparable.

�gure 3 about here

There is a striking di�erence between these two graphs; leaving aside the ancestral wave, the

highest waves in the normal Evita model are three orders of magnitude higher than those in the

neutral analogue.4 This is clear evidence of how the size of a genotype's activity waves in the

normal Evita data re
ects the genotype's adaptive signi�cance. In the normal model, at each

time one or a few genotypes enjoy a special adaptive advantage over their peers, and this is

re
ected by their correspondingly huge waves. In the neutral analogue, by contrast, a genotype's

concentration re
ects only dumb luck, so no genotype activity waves rise signi�cantly above their

peers. This di�erence between the normal and neutral activity data can be used to quantify the

adaptive evolutionary activity in evolving systems [13, 7, 12].

4 Details in Individual Activity Wave Diagrams

In this section we discuss the speci�c evolutionary phenomena visible in a handful of Evita runs

driven by di�erent mutation rates and lasting for di�erent durations. This detailed analysis of

a variety of individuals runs is the best way to convey how activity wave diagrams can depict a

variety of evolutionary phenomena, such as competitive exclusion and random genetic drift. To

help interpret the adaptive signi�cance of the activity waves, we compare the activity diagrams

with �tness plots of the same runs and we con�rm our interpretations by examining the speci�c

assembly language instructions in the relevant genotypes.

In all the runs shown below we held constant all model parameters except mutation rate and

elapsed time. The grid size was 40� 40, so when the grid �lled up the population consisted of

about 1600 self-reproducing programs. To prune out irrelevant data about transitory genotypes

all the activity distribution functions shown here depict only those genotypes that at one time

have more than a certain minimum representation (�ve copies) in the population.

4The other salient di�erence between the normal and neutral runs|that the ancestral genotype persists about

four times longer in the neutral run|is due to the fact that, since the neutral ancestral genotype need never

compete with better adapted genotypes, its initial numerical advantage as ancestor carries more weight.
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Each genotype in a given run is given a unique name of the form AB, where A is a number

indicating the genotype's length and B is a three-character string (in e�ect, a base 52 number)

indicating the genotype's order of origination among genotypes of that length. Thus, 32aac is

the third length 32 genotype to arise in the course of a given run.

4.1 Mutation rate = 1; 5000 time steps

The activity graph (Fig. 4) of this run is dominated by �ve waves corresponding to the �ve most

populous genotypes over the course of the run. Miscellaneous low-activity genotypes that never

claim a substantial following in the population are barely visible along the bottom of the activity

plot.

�gure 4 about here

Comparison with the �tness plot shows that each of the signi�cant new waves corresponds to

a genotype that has a signi�cant �tness advantage over its predecessors, and closer examination

of those genotypes discloses those adaptive advantages. The �rst signi�cant new wave is caused

by genotype 33aad, which reproduces much faster than the ancestral genotype 37aaa due to its

shorter length. The next signi�cant activity wave, the largest one in the graph, is caused by

genotype 33aak; this genotype is the same length as 33aad but it can reproduce faster because

it has a shorter copy loop. Notice the kink in 33aak's wave at about time step 2000. Magnifying

the low-activity waves at that time shows that this kink is simultaneous with the start of another

wave|the fourth main wave in this plot, due to genotype 31aab which is still shorter in length.

The post-kink slope in 33aak's wave is slightly less than that of 31aab's wave, and in fact genotype

31aab's shorter length gives it only a slight �tness advantage (about 1%) over genotype 33aak.

Finally, the �fth signi�cant wave is caused by a genotype, 30aab, which reproduces faster than

genotype 31aab due to its slightly shorter length.

Thus, we see that the activity distribution plot clearly highlights those genotypes with a

signi�cant adaptive advantage over their peers. In addition to births and deaths of genotypes, we

clearly see the dynamics of competitive exclusion between the major genotypes in the evolving

system.

4.2 Mutation rate = 2; 5000 and 20,000 time steps

The data from this run (Fig. 5) shows a nice correspondence between the main activity waves in

the activity distribution plots and the main �tness jumps, as in the previous run. Closer analysis

reveals the same general pattern as before: The major activity waves correspond to the major
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adaptive events, and these consist of shortening a genotype's length or copy loop. But there are

two interesting exceptions to this general pattern. Each exception involves a distinctive kind of

evolutionary phenomenon, and each leaves a characteristic signature in activity wave diagrams.

�gure 5 about here

�gure 6 about here

One exception is that the second �tness jump corresponds to a cluster of seven similar

genotypes (33aap, 33aaq, 33aar, 33aas, 33aat, 33aau, 33aav) which all arise at about the

same time and which together contribute to a dense cloud of activity waves; see Fig. 6. These

genotypes di�er from each other only by mutations at an unexpressed locus, so they all use

exactly the same algorithm and are neutral variants of one another|di�erent genotypes with

exactly the same phenotype. The unexpressed locus was created by a mutation which produced

a non-template instruction inside the template surrounding the copy loop, saving one executed

instruction per loop traversal and thus signi�cantly increasing fecundity. Once this mutation has

occurred, almost any other mutation at the same locus creates another non-template instruction

with an identical �tness bene�t, so a cloud of neutral variants quickly grows. Since these neutral

variants have exactly the same �tness advantage over their predecessors, and since they all are

just one mutation away from each other, they engage in adaptive interactions with competing

genotypes e�ectively as a single higher-level unit. If the activity data from these neutral variant

genotypes were pooled and graphed as a single phenotype, they would constitute a single salient

wave on a par with the other salient waves in the activity distribution function.

Second, notice that the fourth salient wave (due to genotype 32abl) does not correspond

to a signi�cant �tness jump. The fact that the waves from 32aaV and 32abl coexist for a

long time (about 1000 time steps), rather than one quickly driving the other to extinction by

competitive exclusion, indicates that they are nearly neutral variants. In fact, the �tness of the

second wave (32abl) exceeds that of the �rst wave (32aaV) by about only 0.5%, for 32abl has

a mutation which causes a single instruction to be skipped, for a net savings of one instruction

per reproduction event. The interactions among the three salient waves between time steps 4000

and 5000 have a similar explanation. They are a signi�cant improvement (5% �tness advantage)

over the genotypes that they drive extinct, but they di�er from one another by much less (under

2% �tness di�erence).

12



When this run is extended signi�cantly further (Fig. 7), we continue to see competitive exclu-

sion between genotypes when the origination of one genotype wave causes the end of another, and

we also continue to see neutral variants when signi�cant genotype waves persist simultaneously

for a signi�cant duration.

�gure 7 about here

4.3 Mutation rate = 10; 20,000 time steps

This run (Fig. 8) shows some classic competitive exclusion during the �rst 2000 time steps, in

which signi�cant �tness boosts correspond to the origination of signi�cant new genotype waves.

But evolution reaches an equilibrium early in the run and the bulk of the evolutionary change

in the run consists of random drift among selectively-neutral genotypes|the sort of neutral

evolution emphasized by Motoo Kimura [23]. The di�erence between these kinds of evolutionary

phenomena is clearly indicated in the di�erent quality of the activity waves. A genotype winning

at competitive exclusion typically causes a relatively smooth and sigmoidal-shaped wave (although

the bottom of the wave will be truncated if it's concentration rises extremely fast). By contrast,

random drift causes waves that are much more wiggly because the wave's slope randomly rises

and falls as the genotype's concentration wanders up and down. This di�erence can be clearly

seen in Fig. 1. The sigmoidal wave in Fig. 1 is that due to genotype 32abl in Fig. 5 which arose

through competitive exclusion, and the wiggly wave in Fig. 1 is taken from the random genetic

drift in the middle of Fig. 8.

�gure 8 about here

4.4 Mutation rate = 40; 30,000 time steps

This run (Fig. 9) shows a variety of evolutionary phenomena. First, standard competitive exclu-

sion between genotypes dominates the �rst 3000 time steps of the run; some of this is evident

in the familiar sigmoidal wave shapes, but some is hidden in low-lying clouds of neutral variants

acting as a single phenotype. Next, as the rather wiggly waves signal, over half of the run consists

of random genetic drift among more or less neutral variants with minute di�erences in �tness. It

is interesting to note that genotype 24aNR, which creates the last and longest wiggly wave in the

middle of the run, takes two more instructions to reproduce, and so is slightly less �t, than the
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genotype (24avp) which it supplants. This illustrates how marginal �tness improvements do not

always win the day during random drift.

�gure 9 about here

At about two-thirds the way through the run we see the emergence of a new genotype (24bxI)

which totally dominates the rest of the run. Genotype 24bxI has a huge �tness advantage (about

20%) over its competitors because it has acquired the ability to \unroll the loop". (Shortly before

this the genotype 24bqf acquired a slight �tness advantage by partially unrolling the loop.) The

run ends in a period of evolutionary equilibrium, with a variety of new genotypes coexisting with

the original loop-unroller and undergoing random genetic drift. These new genotypes are all

neutral variants of the original loop-unrolling genotype, di�ering only by unexpressed mutations.

4.5 Mutation rate = 30; 178,000 time steps

This run (Fig. 10) is an order of magnitude longer than any other shown here. We see that

signi�cant adaptations can continue to happen in the Evita model after quite long periods of

stasis. The �tness jump at about time step 10,000 occurred when a genotype (of length 24) �rst

acquired the ability to unroll the loop. The two subsequent signi�cant �tness jumps correspond

to shorter loop unrolling programs, of length 22 and 20 respectively. The long periods between

these adaptive innovations consist of random drift among neutral variants of these loop unrollers.

�gure 10 about here

Of particular interest is the period (roughly spanning time steps 40,000 { 80,000) that has

no salient waves at all|a unique occurrence in the runs shown here. This period starts with

the innovation of a length 22 loop-unrolling genotype, but this genotype is quickly supplanted

by a sequence of selectively-neutral variants, each of which quickly supplants its selectively-

neutral predecessor. All of these neutral variant genotypes di�er only in silent mutations at two

unexpressed sites, and so all have exactly the same �tness. Magnifying the waves corresponding

to these neutral variants would reveal the wiggly signature of random genetic drift.

The striking lack of salient waves during time steps 40,000 { 80,000 implies that the random

drift during this period involves an unusually high density of neutral variant genotypes. The

explanation for this high density is due to the two loci undergoing random drift in these genotypes.

Compared to genotypes of the same length with just one drifting locus, there is an order of

magnitude more possible neutral variants and mutations produce them at twice the rate.
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5 Generalizations and Conclusions

Activity wave diagrams vividly show the evolving adaptive history of genotypes in the Evita

model. Comparing activity waves from the normal Evita model with �tness graphs and with

activity waves in a non-adaptive analogue shows how the signi�cant activity waves have readily

interpretable adaptive signi�cance. Activity distribution diagrams show the number, timing, and

character of a variety of adaptive phenomena, including competitive exclusion between genotypes,

collateral evolution of selectively-neutral variants, and random genetic drift. Somewhat akin to

the interpretation of tracks in a cloud chamber, one can identify and read the history of di�erent

kinds of adaptive events in the waves in an activity distribution function.

Any system with an evolving distribution of genotypes can generate activity distribution

functions, and such distributions make it easy to compare adaptive phenomena across a variety

of arti�cial and natural evolutionary systems. We have made preliminary studies of activity

distribution functions for genotypes in many di�erent systems, including Holland's Echo model

[21, 22], Packard's Bugs model [28, 13], Lindgren's model of evolving strategies in the iterated

prisoner's dilemma [24], Ray's Tierra model [30], the Avida model of Adami and Brown [3],

Arthur's El Farol model [5], and the Santa Fe arti�cial stock market of Arthur, Holland, LeBaron,

Palmer, and Taylor [29, 6]. We have also made analogous studies of activity distribution functions

for taxonomic families in the fossil record [14, 36].

In general, activity distributions from other systems have the same kind of interpretation

as those given here for the distributions from Evita, but there are certain obvious di�erences in

some cases. Some details of the interpretation depend on the de�nition of evolutionary activity, so

modifying the de�nition can change the interpretation. One simple example of this arises in those

contexts in which it is appropriate to de�ne a genotype's evolutionary activity by integrating its

persistence rather than its concentration [11, 12]; in this case the activity waves are all straight

parallel lines with slope equal to one. Some other details of interpretation depend on the nature

of the evolutionary process that generated the data. One important example of this is our inter-

pretation of wiggly activity waves. In the Evita model wiggly waves indicate random drift among

selectively-neutral variants. In other models, though, wiggly waves|especially certain kinds of

coordinated wiggling|can signal various other kinds of interactions (such as host/parasite and

cooperative interactions) which Evita disallows. We have focused in this paper on visualizing

evolutionary phenomena in the relatively simple Evita model in order to make the interpretation

of the activity distributions especially simple and clear.

Evolutionary activity can be de�ned at levels other than the genotype, so activity distribution

functions can depict evolutionary phenomena at other levels. For example, evolutionary activity

has been observed at the level of individual genes [13], classes of genes [10], and taxonomic families

in the fossil record [11, 12]. Analogous distribution functions could also be de�ned at the level of
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the phenotype, e.g., by putting genotypes with e�ectively the same phenotype into equivalence

classes. Furthermore, collecting activity statistics for genetic schemata would reveal the di�erent

schemata's relative adaptive signi�cance, and this would allow one to judge the relative timing

and magnitude of the evolutionary activity of di�erent size schemata, for example.

Activity distribution functions do not just provide a qualitative visualization of evolution-

ary activity; they also enable us to de�ne various quantitative aspects of evolutionary activity,

including both what we might intuitively call an evolving system's \accumulated adaptive activ-

ity" [7, 11, 12] and what we might intuitively call its \adaptive evolutionary innovation" [13, 12].

Quantitative comparison of adaptive evolutionary activity across many di�erent evolutionary sys-

tems, both arti�cial and natural, would open the door to a general study of the essential features

of complex adaptive systems.

No single method can unambiguously show all aspects of all kinds of adaptation in evolving

systems; activity wave diagrams are no exception. Still, these diagrams do 
exibly apply to vir-

tually all evolutionary systems. They are remarkably e�ective for visualizing a system's adaptive

evolutionary activity, and they provide the foundation for a general quantitative study of adaptive

evolutionary dynamics.
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Figure 1: An illustration of two isolated genotype activity waves, taken from two activity distri-

bution functions. The origination and extinction of each genotype is clearly visible. A genotype's

concentration at a given time is proportional to the slope of its activity wave at that time. Thus,

the wave's slope increases (or decreases) when the genotype's concentration in the population

rises (or falls), and the genotype becomes extinct when the wave's slope falls to zero. A point in

the graph of an activity distribution function M(t; a) represents a binary characteristic; M(t; a)

is either 0 or 1 at the point (t; a), depending on whether any genotype in the system has activity

a at time t (recall Eq. 2).
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Figure 2: Activity distribution functions, M(t; a), showing genotype activity waves at di�erent

mutation rates. Note that the time and activity scales on all graphs are the same, so the activity

wave phenomenology is directly comparable. The activity scale causes some activity waves to be

cropped. The activity distribution function at mutation rate = 0 shows only one wave (cropped

very early in the run) because the system can contain only one genotype|the ancestral genotype.

This wave is a straight line with slope one persisting for the duration of the run. In general the

number of waves (new genotypes) is proportional to the mutation rate and the length of waves

(duration of genotypes) is inversely proportional to the mutation rate.
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Figure 3: Genotype activity waves in activity distributions M(t; a) from a normal Evita run

(top) and from a run of the neutral analogue (bottom). The parameters used to drive the neutral

analogue were taken directly from the normal run. Note that the activity scale on the normal

model data is three times that of the neutral analogue; comparable activity scales would make

the waves in the normal model three times higher than those shown here.
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Figure 4: Genotype activity distribution function M(t; u) from a typical run with mutation

rate = 1. Above: graph of M(t; a) showing genotype activity waves. Below: average genotype

�tness. The genotype causing each salient wave is indicated, and its adaptive advantage over its

predecessors is noted. Note that the start of a signi�cant new wave corresponds to an increase in

�tness.
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Figure 5: Genotype activity distribution function M(t; u) from a typical run with mutation

rate = 2, 5000 time steps. Above: graph of M(t; a) showing genotype activity waves. Below:

average genotype �tness. The adaptive advantage of the genotypes causing the salient waves is

indicated. The start of a signi�cant wave generally corresponds to an increase in �tness. Note

the cloud of neutral variants that cause one of the �tness jumps and act in the population like a

single phenotype. These neutral variants are more �t than 33aaf because they require one fewer

instruction per execution of the copy loop. Note also that the signi�cant wave due to genotype

32abl does not cause a signi�cant �tness increase. Genotypes 32abl and 32aaV are nearly neutral

variants which coexist without signi�cant adaptive competition, for 32abl executes only one fewer

instruction per reproduction event than 32aaV.
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Figure 6: Blow up of the activity distribution function M(t; u) from the run with mutation rate

= 2, 5000 time steps, magnifying low activity. The neutral variants shown here cause the �tness

increase that occurs just after time step 1000 (see Fig. 5).
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Figure 7: Genotype activity distribution function M(t; u) from a typical run with mutation rate

= 2, 20,000 time steps; a continuation of the run shown in Fig. 5. Above: plot ofM(t; a) showing

genotype activity waves. Below: average genotype �tness. Genotypes corresponding to some of

the salient waves are marked. Note that the evident adaptive advantage of the salient waves is

being shorter in length than their competition. The signi�cant coexistence of waves is a sign

of selectively-neutral variants. For example, the two simultaneous waves in the middle of the

run are due to the neutral variant genotypes 25aaa and 25aac. Other neutral variants are also

evident during this run. With the exception of the origination of neutral variants, the start of

each signi�cant wave corresponds to an increase in �tness.
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Figure 8: Genotype activity distribution function M(t; u) from a typical run with mutation

rate = 10. Above: plot of M(t; a) showing genotype activity waves. Below: average genotype

�tness. Evolution reaches an equilibrium early in this run. The last genotype clearly arising

through competitive exclusion is 24aaa. The rest of the evolution seen here is dominated by

random genetic drift among selectively neutral genotypes. Some of the neutral variants of 24aaa

undergoing random genetic drift are indicated. Note the quite di�erent quality of the sigmoidal

activity waves due to competitive exclusion and the wiggly waves due to random genetic drift.

The wiggly wave from genotype 24aks was shown out of context in Fig. 1.
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Figure 9: Genotype activity distribution function M(t; u) from a typical run with mutation rate

= 40. Above: plot of M(t; a) showing genotype activity waves. Below: average genotype �tness.

Competitive exclusion is evident in the �rst 3000 time steps of the run and at time step 20,000

when genotype 24bxI discovers the loop unrolling algorithm. Most of the other salient genotype

activity wave phenomena is random drift of nearly neutral variants; note the substantial periods of


at �tness. The quality of the activity waves signals the di�erence between adaptively signi�cant

evolution (sigmoidal waves) and the genetic change during periods of adaptive stasis (the wiggly

waves of neutral variants). Nearly neutral variants are not always exactly neutral. For example,

the three signi�cant waves in the middle of the run (prior to the discovery of unrolling the loop)

are due to genotypes 24anb, 24avp, and 24aNR, which have �tnesses of 0.222, 0.224, and 0.220,

respectively. These �tnesses, though close, are not identical. Nevertheless, note that genotype

24aNR is still able to supplant genotype 24avp even though its �tness is slightly lower (0.220 vs.

0.224). Random genetic drift among nearly neutral variants can swamp slight �tness advantages.
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Figure 10: Genotype activity distribution function M(t; u) from a typical run with mutation

rate = 30. Above: plot of M(t; a) showing genotype activity waves. Below: average genotype

�tness. Three genotypes with successively shorter loop unrolling algorithms cause the three

largest �tness jumps. Between these adaptive innovations there is random genetic drift among

selectively neutral versions of these algorithms. The genotypes of the largest activity waves in

these periods of random drift are indicated.
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