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Abstract

This paper concerns the relationship between the detectable and useful structure in an
environment and the degree to which a population can adapt to that environment. We ex-
plore the hypothesis that adaptability will depend unimodally on environmental variety, and
we measure this component of environmental structure using the information-theoretic un-
certainty (Shannon entropy) of detectable environmental conditions. We define adaptability
as the degree to which a certain kind of population successfully adapts to a certain kind of
environment, and we measure adaptability by comparing a population’s size to the size of
a non-adapting, but otherwise comparable, population in the same environment. We study
the relationship between adaptability and environmental structure in an evolving artificial
population of sensorimotor agents that live, reproduce, and die in a variety of environments.
We find that adaptability does not show a unimodal dependence on environmental variety
alone, although there is justification for preserving our unimodal hypothesis if we consider
other aspects of environmental structure. In particular, adaptability depends not just on how
much structural information is detectable in the environment, but also on how unambiguous
and valuable this information is, i.e., whether the information accurately signals a differ-
ence that makes a difference. How best to measure and integrate these other components of
environmental structure remains unresolved.

Keywords: adaptation, environment, environmental structure, evolution, sensorimotor

function, Shannon entropy.



1 How Does Adaptability Depend on Environmental Struc-

ture?

An evolving system consists of a population of agents adapting their behavior to an environment
through the process of natural selection. The difficulty of the adaptive challenge obviously de-
pends upon the population, the environment, and the interaction between the two. In this paper,
we adopt an environment-centered view, that is, we examine how environments vary in the adap-
tive challenge which they present. This orientation reflects a kind of figure/ground reversal. One
often takes the environment as ground and the adapting population as figure. That is, one treats
the adaptive challenge as fixed and examines the resulting dynamics of adaptation, perhaps as
a function of different adaptive capabilities of the population. Here, we treat the population
as relatively given and study how varying the environment affects the difficulty of the adaptive
task to be solved. This reversal of focus is found in some other recent studies (e.g., Wilson,
1991; Littman, 1993; Todd and Wilson, 1993; Todd, Wilson, Somayaji, and Yanco, 1994) and it
recalls the earlier work of Emery and Trist (1965) on the causal texture of environments of social
organizations.

Recent studies tend to pursue one of two projects: either (i) providing an abstract categoriza-
tion of environments, or (ii) gathering experimental evidence about how artificial agents actually
adapt in different simulated environments. Wilson (1991) and Littman (1993) follow the first
project, with Wilson focusing on the degree of non-determinism in an environment and Littman
characterizing the simplest agent that could optimally exploit an environment. But neither Wil-
son nor Littman address the degree to which a given (possibly suboptimal) agent could adapt to
a given environment. Experimental investigation of agents adapting in different environments—
project (ii) above—is the focus of Todd and Wilson (1993) and of Todd, Wilson, Somayaji, and
Yanco (1994). Todd and Wilson introduce an experimental framework for investigating how
adaptation varies in response to different kinds of environments, and Todd et al. demonstrate
different adaptations in different kinds of environments. In neither case, though, is environmental
structure actually classified or measured. Our work pursues both projects (i) and (ii) simultane-
ously; we experimentally study how the adaptability of given (possibly suboptimal) agents varies
in response to environmental structure. Since our characterization of environmental structure
is quantitative, we can seek evidence for general laws relating adaptability and environmental
structure.

The guiding idea behind our work is the hypothesis that a population’s ability to adapt to an
environment depends roughly unimodally on the environment’s detectable and useful structure. If
the environment is too simple because it does not present the population with enough of the kind of

information which adaptation can exploit, then adaptation will be difficult. On the other hand, if



the environment is too complex because it swamps the population with too much information, then
adaptation will again be difficult. Adaptability would seem to be maximized somewhere between
these extremes. This hypothesized dependence of adaptability on environmental structure should
apply to both artificial and natural systems. In this paper we explore this hypothesis in a simple
artificial evolving system. This makes it comparatively easy to tease apart the relevant issues; it
also provides a baseline against which more complex systems can be compared and understood.

The population in our model consists of sensorimotor agents. Each agent responds to limited
sensory input from the environment with a single behavioral output specified by the agent’s
genome. The adaptive task consists of finding an output to associate with each possible input.
The difficulty of the adaptive task, therefore, would seem to involve at least the following aspects

of the environment:

e the quantity of sensory information, i.e., the variety of sensed environmental conditions

with which behaviors must be associated;

e the ambiguity of the information, i.e., the degree to which sensory input accurately repre-

sents the objective environment;

e the value of the information, i.e., the benefit of adaptive behaviors over non-adapted be-

haviors.

In terms of these components, an adaptive task is difficult if the environment sends many messages
requiring an adaptive response, if the messages from the environment are ambiguous, or if they
have little value.

Our agents’ sensory input reflects the environment’s local structure, so the first component
listed above reflects the agent’s perception of the environment’s structural variety. This is a salient
feature of the environmental structure and the adaptive challenge it presents, and it is the essence
of Ashby’s (1956) conceptualization of adaptation, according to which environmental variety poses
a problem to which behavioral variety is the response. We thus begin our analysis of environmental
structure here, seeking initially to ascertain to what extent this factor alone determines the
difficulty of the adaptive task. We find that, although the environment’s structural variety is
indeed an important component of structure relevant to adaptation, it does not characterize it
entirely. We speculate that, at least in part, this is because it omits the roles played by ambiguity

and value.

2 A Model of Adaptation in Diverse Environments

All of our empirical observations are from computer simulations of adaptation in environments

with different kinds of structure. Our model consists of many agents that exist sensing their local



environment, moving as a function of what they sense, and ingesting what resources they can

find.

2.1 Agent and Environment Interactions

The world is a grid of 128x128 sites with periodic boundary conditions, i.e., a toroidal lattice.
All that exists in the world besides the agents is a resource field, which is spread over the lattice
of sites and is replenished from an external source. The resource level at a given site is set at
a value chosen from the interval [0-R], where R is the maximum resource level (chosen here
arbitrarily as 255). These models are a modification of those previously studied by Bedau and
Packard (1992), Bedau, Ronneburg and Zwick (1992), Bedau (1994), Bedau and Bahm (1994),
Bedau (1995), and Bedau, Giger and Zwick (1995). All of these models are extensions of one
originally proposed by Packard (1989). In the framework of Emery and Trist (1965), our model is
a type-II (“placid, clustered”) rather than type-III (“disturbed, reactive”) environment, because
the principal consideration is location rather than response to the behaviors or possible behaviors
of other agents.

Here we consider only static resource fields, i.e., fields in which resources are immediately
replenished whenever they are consumed, so that the spatiotemporal resource distribution is con-
stant. In static resource models the population has no effect on the distribution of resources.
Nevertheless, since the agents constantly extract resources and expend them by living and repro-
ducing, the agents function as the system’s resource sinks and the whole system is dissipative.

Adaptation is resource driven since the agents need a steady supply of resources in order to
survive and reproduce. Agents interact with the resource field at each time step by ingesting all
of the resources (if any) found at their current location and storing it in their internal resource
reservoir. Agents must continually replenish this reservoir to survive for they are assessed a
constant resource tax at each time step. If an agent’s internal resource supply drops to zero, it
dies and disappears from the world. As a practical expedient for speeding up the simulation, each
agent also runs a small risk, proportional to population size, of randomly dying.

Each agent moves each time step as dictated by its genetically encoded sensorimotor map:
a table of behavior rules of the form IF (environment j sensed) THEN (do behavior k). Only
one agent can reside at a given site at a given time, so an agent randomly walks to the first
unoccupied site near its destination if its sensorimotor map sends it to a site which is already
occupied. (Population sizes range from about 2% to 10% of the number of sites in the world, so at
the larger population sizes these collisions will occur with a non-negligible frequency.) An agent
receives sensory information about the resources (but not the other agents) in the von Neumann
neighborhood of five sites centered on its present location in the lattice. An agent can discriminate

only four resource levels (evenly distributed over the [0—-R] range of objective resource levels) at



each site in its von Neumann neighborhood. Thus, each sensory state j corresponds to one of 45
= 1024 different detectable local environments. Each behavior k is a jump vector between zero
and fifteen sites in any one of the eight compass directions (north, northeast, east, etc.). The
behavioral repertoire of these agents is finite, consisting of 8 x 16 = 128 different possible behaviors.
Thus, an agent’s genotype, i.e., its sensorimotor map, consist of a movement genetically hardwired
for each detectable environmental condition. These genotypes are extremely simple, amounting
to nothing more than a lookup table of 1024 sensorimotor rules. On the other hand, the space in
which adaptation occurs is vast, consisting of 12819%¢ distinct possible genotypes. (As the next
section explains, in some environments some von Neumann neighborhoods do not exit and so
the corresponding sensorimotor rules cannot ever be used; this lowers the number of effectively
different genotypes in these environments.)

An agent reproduces (asexually—without recombination) if its resource reservoir exceeds a
certain threshold. The parent produces one child, which starts life with half of its parent’s resource
supply. The child also inherits its parent’s sensorimotor map, except that mutations may replace
the behaviors associated with some sensory states with randomly chosen behaviors. The mutation
rate parameter determines the probability of a mutation at a single locus, i.e., the probability
that the behavior associated with a given sensory state changes. At the extreme case in which
the mutation rate is set to one, a child’s entire sensorimotor map is chosen at random.

Sensorimotor strategies evolve over generations. A given simulation starts with randomly
distributed agents containing randomly chosen sensorimotor strategies. The model contains no a
priori fitness function (Packard 1989), so the population’s size and genetic constitution fluctuates
with the contingencies of extracting resources. Agents with maladaptive strategies tend to find few
resources and thus to die, taking their sensorimotor genes with them; by contrast, agents with
adaptive strategies tend to find sufficient resources to reproduce, spreading their sensorimotor
strategies (with some mutations) through the population.

During each time step in the simulation, each agent follows this sequence of events: it senses
its present von Neumann neighborhood, moves to the new location dictated by its sensorimotor
map, consumes any resources found at its new location, and then goes to a new location chosen
at random from the entire lattice of sites. This algorithm constantly scatters the population over
the entire environment, exposing it to the entire range of detectable environmental conditions.
Since the resource field is static, the set of detectable environmental conditions remains fixed
throughout a given simulation. Agents never have the opportunity to put together unbroken
sequences of behaviors, since each behavior is followed by a random relocation. And since all
agents are taxed equally, rather than being taxed according to distance moved, all that matters
to an agent in a given detectable local environment is to jump to the site most likely to contain

the most resources. Thus, the adaptive challenge the agents face is to make the best possible



single move given specific sensory information about the local environment. Adaptation occurs
through multiple instances of these one-step challenge-and-response trials.

The correctness of an agent’s perceived view of its environment, within the limits of its discrim-
ination, is altered by a model parameter specifying a level of “sensory noise.” This parameter
specifies the probability that an agent’s perceived neighborhood will be random, rather than
reflecting its actual neighborhood. With maximal sensory noise (probability one), an agent’s sen-
sory state is always chosen at random, and so its behavior is always chosen from its sensorimotor
map at random. Significant sensory noise will damp a population’s ability to adapt, because it
undermines the process of inducing optimal connections between sensory inputs and behavioral

outputs.

2.2 Varying Environmental Structure

We want to study adaptation in a variety of environments that differ only in their environmental
structure. At the same time, to make population size a measure of adaptability that can be
meaningfully compared across the different environments, we want all of these environments to
have the same total quantity of resources. If we let R be the maximal possible resource level at a
site (in the present simulation R = 255), we can achieve this goal by engineering the environments
so that the average resource level at a site is %. (Although a site can have any of 256 different

objective resource levels, recall that the agents can discriminate only four resource levels.) The

following suite of environments meets these desiderata:
1. Flat. Each site in this environment has a resource level set to %.

2. Random. Resource levels in this environment are chosen at random with equal probability

from the interval [0-R], thus ensuring that the average resource level is % (see Figure 1).

figure 1 about here

3. Sinewaves. Resource levels at each site in these environments are assigned by two sinewaves,
one along the z-axis and the other along the y-axis. The amplitude of these waves is scaled
in such a way that when both are maximal and overlapping the site has the maximum re-
source level, when both are minimal the site has no resources, and the average resource level
is %. The frequencies of the two sinewaves can be varied independently and are expressed
in the number of sinewave periods which cover the z- or y-axes. Figures 2-7 show top-
down views (agent’s perspective—limited to four levels of discrimination) of 1x1, 16x 16,

64x64, 8x48, 14x63, and 34x42, sinewave environments. Note that, since a given site in



the lattice can have only one resource level, the lattice structure imposes a coarse grain on
the sinewaves. When the dimensions of the lattice and the frequencies of sinewaves do not

match, the coarse grain structure can look rather unusual, as Figures 5, 6, and 7 reveal.

figures 2, 3, 4, 5, 6, 7 about here

4. Substituting Flat or Random Levels in Sinewaves. In these environments the
sinewave-generated resource level at randomly chosen sites is substituted with either con-
stant or random values. Since the constant resource level is set equal to %, and the random

resource levels are chosen with equal probability from the interval [0-R], the average resource

level per site remains % regardless of the density of sites. The density of substituted sites
is a model parameter. Figures 8 and 9 show top-down views (agent’s perspective) of 16x16
sinewave environments in which fifty percent of the sites have been substituted with flat or
random resource levels, respectively. (The random substitutions depicted in Figures 8 and 9
differs from the “sensory noise” described in the previous section. Substitutions, when they
exist, are part of the objective and permanent structure in the environment. Sensory noise,
by contrast, exists only “in the agents’ minds” and obscures the environment’s objective

and permanent structure.)

‘ﬁgures 8, 9 about here

To develop a feel for the various adaptive challenges posed by our suite of environments, it
is useful to apply Wilson’s and Littman’s classification schemes to them. Wilson’s (1991) cat-
egorization of environments is sensitive to two independent aspects of environmental structure.
The distinction between Class 0 and Class 1 environments depends on whether for every stimulus
(Class 0), or only for some stimuli (Class 1), there is an action which results in positive reinforce-
ment. In addition, the distinction between Classes 0 or 1 and Class 2 depends on whether the
next stimulus is (Classes 0 or 1), or is not (Class 2), determined by the present stimulus and the
action. Wilson further subdivides the non-deterministic Class 2 environments into Classes 2.k,
for each finite k, according to whether the next stimulus is determined by the & — 1 preceding
stimulus/action pairs. The flat environment clearly falls into Class 0 since there is never any
question about the next sensory state. At the other extreme, the random environment clearly

falls into Class 2, since the present sensory state and action do not come close to determining the



next sensory state. When we consider sinewave environments, the classification becomes more
subtle. If we ignore the possibility that agents collide and start a random walk, then sinewave
environments fall into either Class 0 or Class 2; e.g., the 64x64 environment is Class 0 since in
every sensory state there is an action that lands on the top of a food pile, while the 1x1 environ-
ment is Class 2 since the outcome of all actions from some sensory states is indeterminate. (This
is explained further in section 4.2 below.) Furthermore, recall that the environment randomly
relocates each agent each time step. So, if the environment is non-deterministic, i.e., Class 2,
it will remain non-deterministic no matter how many past stimulus/action pairs are known, so
for no finite k is the environment in Class 2.k. On the other hand, when we take account of the
possibility that our agents always run some risk of colliding and being forced to do a random walk
to the first unoccupied site, then all of our non-flat environments become Class 2, and the envi-
ronment’s random relocation debars them from any Class 2.k. That is, all non-flat environments
fall into Wilson’s most complex class of environments.

Littman (1993) classifies environments in terms of the simplest agent that can adapt optimally
to the environment, where the complexity of agents are characterized as follows (p. 262): “the
ideal (h,3)-agent uses the input information provided by the environment and at most & bits of
local storage to choose an action that maximizes the discounted sum of the next 3 reinforcements.”
It turns out that this categorization of environments is not sensitive to the variety among our
environments. Since the environment always randomly relocates each agent after each action,
there is no advantage to considering more than the next movement when selecting an action,
and, by the same token, there is no evident advantage to storing any information in short term
memory. Thus, all our environments seem to be (A = 0,8 = 1)-environments—the simplest
category in Littman’s scheme. (Incidentally, if this is correct, then Littman is wrong to identify
Class 2 with (A > 0,8 > 1)-environments (1993, p. 262), although perhaps this identification is
true when agents can string together uninterrupted sequences of actions.)

The flat, random, and sinewave environments range from being too simple (flat) to too difficult
(random) for adaptation, with a variety in between these extremes (various sinewaves). Substi-
tuting resource levels in a sinewave environment with either constant or random values generates
even more varied adaptive challenges. Furthermore, these adaptive challenges are controllable so
that, as the density of flat or random substituted sites approaches one, the adaptive challenge
approaches that posed by the flat or random environments; or, as the density of substituted sites
approaches zero, the adaptive challenge approaches that posed by the original sinewave environ-
ment. By choosing from this suite of environments, we can vary the kind of adaptive challenge

posed by the environment, and then measure the extent to which adaptation is affected.



3 Measures of Adaptability and Environmental Structure

To study how adaptability depends on environmental structure, we define independent measures
of environmental structure and adaptability. We then observe how adaptability (our dependent
variable) responds when we manipulate environmental structure (our independent variable). The
measures we propose are not exhaustive or final. Still, they do illuminate how adaptability and

environmental structure interact. In addition, they can promote the search for better measures.

3.1 A Measure of Environmental Structure

Adaptation is sensitive to those aspects of environmental structure that the agents perceive and
act upon. One such aspect is the variety of the environmental conditions which the agents
can discriminate. A natural way to quantify this is with the information-theoretic uncertainty
(Shannon and Weaver 1949) of the distribution of detectable local conditions:

Hg = —ZPE(W)Ing PE(UZ'), (1)

i
where v; is the i*! detectable environmental condition (in this case, a distinct von Neumann neigh-
borhood), and Pg(v;) is the probability frequency of occurrence across all sites in environment
F of v;.

Hpg measures the information content of the environmental conditions that the agents can
detect, 1.e., how much information on average does an agent gain by detecting a given local
environmental condition. This measure is a particular way of integrating two aspects of the dis-
tribution Pg(v): its width (number of different v) and flatness (constancy of Pg(v;)). Everything
else being equal, the wider or the flatter Pg(v) is, the more uncertain an agent will be about
which neighborhood it will detect, the more information an agent will get when it does detect
its neighborhood, and the higher Hg will be. We can equivalently refer to Hg as the detectable
environment’s uncertainty, Shannon entropy, or information content. Hg measures how much in-
formation an agent gains by sensing the environment—how “surprising” the sensory information
is—on average. By contrast, Wilson’s Class 2.k scheme is related to how much information an
agent gains about the nezt sensory state—how surprising it is—given the present sensory state
and action.

In the environments studied here, the neighborhoods v are different patterns in the detectable
resource levels in the five sites that make up the von Neumann neighborhood. Since these envi-
ronments all have static resource distributions, in every case Hg is constant over time. But Hg
will change in environments with dynamic resource distributions. The measure Hg thus applies
to a wide variety of environments in addition to those studied here.

To develop a feel for aspects of the detectable environmental structure measured by Hg,

consider our suite of environments:

10



1. If E is the flat environment, all local environmental conditions are identical, so they all
look identical to the agents in the population. Thus, for some specific j, Pgat(v;) = 1, and

Paat(ve) = 0 for all k # j. Thus, Hgat = 0.

2. If E is the random environment, all detectable environments occur with (approximately)
equal frequency, which makes Hrandom close to its maximal value, which is log, of the
number of different v. Since the agents in our model can detect two bits of information
about resource levels at each site in their von Neumann neighborhood, there are 45 = 21°
detectable environmental conditions, so Hrandom & 10. (In the random environments we

generated, typically Hrandom = 9.95.)

3. Sinewave environments vary in the # and y frequency of the sinewaves, and the number
and frequency of detectable neighborhoods varies with these frequencies. Thus, Pg(v) can
have a variety of shapes, and Hg can take a variety of values. For example, Hix1 = 2.65,

H4><4 = 399, H16><16 = 573, and H34><42 = 7.09.

4. If some fraction of the sites in a sinewave environment are replaced with flat or random
resource levels, Hg values can vary quite a bit. Low density of replaced sites tend to make
Pg(v) slightly flatter, which makes Hg slightly higher, regardless of whether the resource
levels in the new sites are flat or random. As the density of replaced sites approaches one
however, depending on whether the substituted levels are flat or random, Pg(v) approaches

the shape of Paat(v) or Prandom(v), so Hg approaches the value of Haat or Hrandom-

Finally, we wish to reiterate that Hg does not simply reflect the objective properties (i.e.,
the resource field) of the environment; it reflects this field as perceived by agents of the popula-
tion. In this respect, it is like the ways in which Wilson (1991) and Littmen (1993) characterize

environments.

3.2 A Measure of Adaptability

We define adaptability, Ap(E), as the degree of adaptive success achieved by population P
in environment F. Adaptability depends upon both properties of the environment and upon
the population’s internal capacities—such as its sensory capacities, its information processing
capacities, its behavioral capacities, and its metabolic capacities. We write F as the argument
and P as a parameter to indicate that in this study we are focusing primarily on the effect of
different environments, and not different populational capacities, on adaptability.

The model we study here is resource driven, and a population’s size reflects its ability to
locate the resources found in the environment. Thus, in this context we measure adaptability
related directly to population size. (In a different context it might be more useful to measure

adaptability in terms of, say, birth rate or performance on some predefined test.) Nevertheless,
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we cannot assume that observed population size by itselfis an accurate measure of adaptability,
for a population of agents might be able to sustain a certain size simply due to the inherent
capacities of the agents and the nature of the environment. For example, given the quantity of
resources available in the environment and given the agents’ existence taxes, even if all agents
have entirely unreliable sensors and so move entirely at random, some number of agents might
still survive just due to the probability of accidently “bumping into” resources. To factor out
this possibility, we compare maximal equilibrium population size in a given environment with
the equilibrium size of a “reference” population in exactly the same kind of environment. The
maximum population size is the largest population size reached as certain parameters are varied.
(Here, we varied mutation rate.) The reference population has exactly the same set of internal
capacities (sensory capacities, information processing capacities, behavioral capacities, metabolic
capacities, etc.) as the observed population, ezcept that it is engineered in such a way that it
cannot adapt to the environment. We denote this reference population size min(P|E), where P|E
denotes the equilibrium size of population P given environment E. Thus, the adaptability Ap(E)
of a certain population P in environment E is how much larger than the reference population the

largest population is, expressed in units of the reference population size.

Ap(E) = mam(PLLZr)L(—PT;)n(P|E) )

If maz(P|E) = min(P|E), we let Ap(E) =0.

We create the reference population by setting the sensory noise parameter to one, thus ensuring
that each agent always acts at random. Reference populations can be created in other ways,
as well, for example, by setting the mutation rate to its maximal value. Different reference
populations might well have different equilibrium population sizes in a given environment. This
should create no confusion, though, provided we bear in mind how the reference populations are
defined in each context, and provided these reference populations are appropriate for the purposes
at hand.

Let’s briefly consider how this measure of adaptability works in two sinewave environments.
(We study how adaptability depends on environment in detail in the next section.) The envi-
ronments are 1x1 and 16x16 sinewaves (recall Figures 2 and 3), and mutation rate, u, is varied
among 0, 0.001, 0.01, 0.1, and 1. Figures 10 and 11 show time series of population size from five
simulations at different mutation rates in each of the two environments. Figure 12 shows how

equilibrium population size in all ten runs varies as a function of mutation rate.

figures 10, 11, 12 about here

We see some variation in equilibrium population size at different mutation rates: a slight

12



effect in the 1x1 environment and a dramatic effect in the 16 x16 environment. When p = 1 and
every IF — THEN behavior in each agent is chosen at random, we observe the lowest population
sizes. At the other end of the spectrum, when g = 0 and no new behaviors ever enter the
population, equilibrium population size in the 1x1 environment is slightly higher, and in the
16x16 environment equilibrium population size is much higher. Finally, although we sampled
only a few intermediate mutation rates, we see that population size increases away from both of
these two extremes. In the 16 x16 environment, in particular, population size rises dramatically
as u drops below 1.

The way population size varies with mutation rate has a straightforward explanation. If p = 1,
every agent has a randomly generated sensorimotor strategy, so good sensorimotor strategies
cannot be inherited. If 4 = 0, selection will favor the best sensorimotor strategies that happen
to be present in the initial randomly-produced population, but no innovative behavior rules
ever enter the gene pool. Small but positive mutation rates both allow agents to pass on good
behaviors and allow new behaviors to be tested by the population. This explanation fits with
previous observations in similar models on how adaptation (measured differently) depends on
mutation rate (Bedau and Bahm 1994, Bedau and Seymour 1994, Bedau 1995).

Since the largest equilibrium population sizes in the two environments occur when g = 0.001,
populations that evolve at this mutation rate give us the value of maz(P|E). The maximum equi-
librium populations are about 1430 in the 16 x 16 environment and 495 in the 1x1 environment.
Since the reference population size, min(P|E), was observed to be about 400 in both environ-
ments, this yields adaptability values of Ap(16 x 16) = 2.57 and Ap(1 x 1) = 0.24. In other
words, the equilibrium population size in the 16x16 environment is 2.57 reference populations
larger than the reference population, compared to 0.24 reference populations larger for the 1x1
environment. Evidently, this kind of population of agents can adapt much more successfully to
the 16 x 16 environment than the 1x1 environment. The explanation for this difference is explored

in section 4.2.

4 Observations of Adaptability and Environmental Struc-

ture

Hundreds of simulations were conducted in various environments. Except for environment, mu-
tation rate and sensory noise, all model parameters were held constant across all simulations.
Each simulation lasted for 100,000 time steps (although, as Figures 10 and 11 suggest, in many
environments population sizes reached equilibrium levels well before the end of the simulation).
Population size data were collected every 1,000 steps, and equilibrium population sizes were

calculated by averaging population size data collected during the final 20,000 time steps.
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Our experiments occurred in three stages. In the first stage, we concentrated on a simple
progression of symmetric sinewave environments (i.e., 1x1, 2x2, etc.). In the second stage, we
studied some sinewave environments with similar Hg values, but different spatial properties.
The results at this stage led us to take a closer look at the adaptive challenge posed by various
environments. As a result, we propose two additional components of environmental structure
besides Hg. In the third stage of experiments, we varied the density with which flat or random

resource levels were substituted in one sinewave environment.

4.1 Sinewave, Flat, and Random Environments

We conducted two hundred simulations in the first stage of our experiments. In order to get an
initial sense of how adaptability depends on uncertainty, Hg, of detectable neighborhoods, we
focussed on certain symmetrical sinewave environments (i.e., those in which the z and y frequen-
cies are identical). These environments exhibit a gradual variation in Hg values: Hyx1 = 2.65,
Hoyo = 3.18, Hyxa = 3.99, Hgxs = 5.05, Higx16 = 5.73. In order to study a sinewave environ-
ment with a higher Hg value, we also ran simulations in the 34x 42 sinewave environment, where
H3z4x42 = 7.09. Finally, to study the most extreme possible environments, we ran simulations in
the flat and random environments, with Hgat = 0 and Hrandom = 9.95.

Figure 13 shows that, at least in the selected environments, adaptability Ap(E) depends
unimodally with the uncertainty of the detectable environments, Hg. Adaptability is nil in the
flat environment, with Ap(flat) = 0. In the series of symmetrical sinewaves, as the Hg value
increase, so does the adaptability, reaching a maximum value of A16x16 = 2.57. When we move
beyond the symmetrical sinewaves to the 34x42 environment, Hzqx42 = 7.09, adaptability falls
to roughly half. This environment was added because it has the highest Hg of all sinewave
environments observed. Finally, in the random environment, the most uncertain environment of

all, adaptability falls almost to zero.

figure 13 about here

This dependence of adaptability on environment interacts as one would predict with factors
that damp adaptability. Figure 13 shows that sensory noise damps adaptability, and this damping
increases monotonically with noise level. If we assume that the flat environment has too little
environmental structure for adaptation, and that the random environment has too much structure
for adaptation, and that Hg measures at least one component of environmental structure, then,
so far, our observations in these selected environments are consistent with our suggestion that

adaptability depends unimodally on environmental structure.
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To further test our tentative result that adaptability depends on Hg, we did simulations with
three additional sinewave environments. Two environments, 14x63 and 8x48, were chosen to
explore the adaptability curves (see Figure 13) at Hg values between that of the 16x 16 environ-
ment where adaptability was maximal, and that of the 34x42 environment where adaptability
first declined. The Hg values for these two environments are Hisxg3 = 6.04 and Hgyx4s = 6.23;
compared to Higx16 = 5.73 and Hszgqxaz = 7.09. At the other end of the scale we added the
high frequency 64x64 environment (Hgaxea = 2.00) to contrast with the low frequency 1x1
environment (Hyx; = 2.56) (see Figures 3, 6, and 7).

Figure 14 adds the adaptability observed in the 64x64, 14x63, and 8x48 sinewave envi-
ronments to the results presented in Figure 13, with the environments ordered according to
their Hg value. Clearly adaptability is not smoothly unimodal in Hg. For one thing, although
Hiax63 < Hgxag and these environments appear on that part of the Hg scale in Figure 14 in
which Ap(FE) is falling, Ap(14 x 63) < Ap(8 x 48). This indicates that, adaptability depends

upon more than just Hg.

figure 14 about here

Adaptability in the 64x64 environment dramatically underscores this conclusion. Although
its Hg value is relatively low, its adaptability is actually higher than that of any other sinewave

environment; Ap(64 x 64) = 3.02. Clearly, Ap(E) does not depend on Hg alone.

4.2 Additional Components of Environmental Structure

At least two additional factors, besides Hg, can affect the adaptive significance of the information
an agent gains from sensing its neighborhood. Ignoring sensory noise, there is a distinction
between the number of objective as opposed to perceived resource levels, namely 256, as opposed
to four. Thus, an agent’s information about the resources in its local neighborhood is imperfect.
Figures 15 and 16 show side-views of both the objective and perceived resource levels in a cross-
section of sites in 1x1 and 4x4 sinewave environments, respectively. Second, recall that an agent
can move up to fifteen sites away from its current location, but its sensory information is restricted
to its present and four immediately adjacent sites; in other words, the movement horizon of the

agents in the population greatly exceeds their sensory horizon.

figures 15, 16 about here
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The roles played by these two factors in an environment affect the adaptive challenge set by the
environment. Consider an agent in a 1x1 sinewave environment, and imagine the agent is about
one third the way up a resource mountain (e.g., located at about site 69 in Figure 15). This agent
is located on an objective resource gradient which, if it could be perceived, would unambiguously
indicate where to find the most resources. In fact, the agent’s movement horizon includes sites
about two-thirds the way up the resource mountain. However, given the relatively gentle slope
in this sinewave, and given the agent’s limited sensory discrimination, the agent cannot detect
the resource gradient; instead, all sites in its von Neumann neighborhood will appear to contain
the same quantity of resources. That is, the agent will be on a perceived resource plateau. The
agent’s sensory information is useless; it cannot indicate in which direction it is best to move.
The resource mountain is in one direction and the resource valley is the other direction, but its
sensory information provides no hint of which direction is which. Thus, gaps between perceived
and objective resources and between sensory and movement horizons limit the extent to which the
population can adapt to the 1x1 sinewave environment. By contrast, consider an agent one-third
the way up a resource mountain in a 4x4 sinewave environment (e.g., located at about site 49
in Figure 16). Given the steepness of the resource mountains in this environment, the agent will
detect a resource gradient. Furthermore, the very top of the resource mountain is within the
agent’s movement horizon. Thus, an agent’s sensory information is much more useful in the 4x4
sinewave environment, and the population should be better able to adapt to this environment.

These reflections underscore that, over and above Hg, there are at least two additional prop-

erties of the environment that are relevant to adaptability:

e Ambiguity. An environment’s ambiguity reflects how misleading are the environmental
indications about the adaptive significance of different behaviors. For example, in each in-
stance of each detectable neighborhood there is some optimal behavior. If the same behavior
is optimal in each instance of a given neighborhood, then that neighborhood is unambigu-
ous. On the other hand, if the optimal behavior in some instances of that neighborhood is
different from the optimal behavior in other instances, then that neighborhood is ambigu-
ous. The distribution of this ambiguity over all detectable neighborhoods reflects a second
aspect of environmental structure. (Ambiguity is related to the non-determinism by which
Wilson (1991) demarcates Class 2 from Class 0 or 1 environments, but ambiguity focusses

only on the degree to which non-determinism is relevant to adaptation.)

e Value. An environment’s value indicates how much can be gained by adapting. At a
given environment site, different behaviors yield different resource payoffs. For example,
one can ask how much better than the average payoff is the optimal payoff; this reflects a
site’s value. The distribution of values over all sites is a third aspect of an environment’s

structure. (The value scale is related to the Wilson’s (1991) dichotomy between Class 0 and
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Class 1 environments.)

Ambiguity and value make opposing contributions to adaptability. Everything else being
equal, the adaptability varies directly with value, but inversely with ambiguity. To get a feel for
these environmental properties, consider two extreme cases. In a flat environment, ambiguity is
nil since there is no variation in the payoff of different behaviors. In addition, value is nil since
all behaviors have the same payoff. On the other hand, in a random environment, ambiguity is
high since the optimal behavior in a given neighborhood varies greatly across the neighborhood’s
different instances. The value is also high since at most environment sites a maximum or near
maximum resource level is within the jump range of agents.

Ambiguity and value seem promising candidates for explaining the relative adaptability of the
64x64 and 1x1 environments. The 64x64 environment has no ambiguity. Every neighborhood
is such that there is a behavior that is optimal in all instances of that neighborhood (see Fig-
ure 4). In addition, the value of this environment is maximal since the optimal behavior in each
neighborhood yields maximal resources (the top of a resource mountain). By contrast, the 1x1
environment is highly ambiguous. Because of the distinctions between objective and perceived
environment and between movement and sensory horizon, the optimal behavior in each of its
four predominant neighborhoods varies substantially in different instances of a neighborhood (see
Figures 2 and 15). Also, this environment has only moderate value. The likely distance to the
optimum site, even were the location of this site unambiguous, typically exceeds the movement
horizon. The optimal behavior in many neighborhoods, even were it known, would yield only
moderate resources.

It is less obvious how to explain the relative adaptability of the 14x63 and 8 x 48 environments.
Systematic study of ambiguity and value in these environments is required.

Hpg measures the quantity of information detectable in the environment. By contrast, ambi-
guity and value reflect the pragmatic implications of that information, i.e., how revealing about
which behavior is optimal is the environmental information, and how much can be gained by
the optimal behavior. Our results with sinewave environments suggests that the properties of an
environment relevant to adaptation include ambiguity and value in addition to Hg. We can now
express this as follows: The adaptability of a population in an environment depends on both the
amount and the pragmatic import of the information the population has about its environment,
i.e., on the extent to which the detectable environmental information signals “a difference that

makes a difference,” to use Bateson’s (1972, p. 453) phrase.

4.3 Flat and Random Substitutions in a Sinewave Environment

We have suggested that adaptability depends on the amount and pragmatic import of environ-

mental information—that is, the detectable and useful environmental structure—and that this
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quantity reflects both the uncertainty (i.e., Hg) as well as the ambiguity and value of the en-
vironment. However, we do not propose to measure ambiguity or value here. Nevertheless, we
do think that the extremes of the flat and random environments are good examples of what we
mean by “too little” and “too much” detectable and useful environmental structure, respectively.
Furthermore, substituting sinewave-generated resource levels at more sites with flat (random)
values makes a sinewave environment more like a flat (random) environment. So, without mea-
suring ambiguity or value, much less systematically varying them, we can still get some sense
of how adaptability depends on detectable and useful environmental structure by observing how
adaptability depends on varying the density with which flat or random sites are substituted in a
sinewave environment.

We used the 16 x 16 sinewave environment as our baseline, since this environment has a struc-
ture such that the resource gradient is always sensible from an agent’s perspective (minimal
ambiguity) and a maximum resource level is always within an agent’s jump range (maximum
value). We varied the density of substituted sites across the values 0.01, 0.05, 0.10, 0.25, 0.50,
0.75, and 1.00, in a total of 75 simulations. Sensory noise was set to zero in all these simulations.

Figures 17 and 18 show how adaptability depends on density of flat and random substituted
sites. In both cases, adaptability falls off monotonically with the degree of substitution. As den-
sity of flat or random sites approaches one, adaptability approaches Ap(flat) or Ap(random); that
is, it becomes negligible. (Note that the population can slightly adapt in random environments,
evidently accommodating itself to some aspects of the static environmental structure; see Fig-
ure 1.) In addition, as the density of substituted sites approaches zero, adaptability approaches

Ap(16 x 16).

figures 17, 18 about here

These results provide further support for the suggestion that adaptability depends unimodally
on detectable and useful environmental structure, although we cannot yet fully quantify this

relationship.

5 Conclusions

Our observations support two kinds of conclusions: methodological conclusions about how to
quantify properties like adaptability and environmental structure, and substantive conclusions
about how adaptability depends on environmental structure.

Our measures of population adaptability, Ap(E), and information content Hg of detectable

environmental conditions have considerable virtues. As we have defined it, Ap(F) can be mea-
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sured in many systems; in addition, the idea behind Ap(F) can be implemented in other ways, to
capture other kinds of population adaptability. Hg does not capture all aspects of environmental
structure, but it has very general applicability and does capture one important component of
environmental structure.

Furthermore, we think that ambiguity and value are additional components of detectable
environmental structure. These quantities still need systematic study, and they raise further
theoretical issues. For example, each might involve the notion of the optimal behavior in a given
neighborhood, but this notion itself needs further clarification. In the presence of ambiguity, a
given behavioral rule might have multiple possible consequences. Such a rule could be evaluated
based on its average, worst, or best possible consequences, corresponding to the maximum ex-
pected value, maximin, and maximax decisions strategies (von Neumann and Morgenstern 1944).
These different decision strategies are likely to have different evolutionary consequences, whose
merits are unpredictable. One way to cope with this unpredictability in the presence of ambiguity
might be to have sensorimotor strategies evolve on a short-term evolutionary time scale, but allow
the decision strategy itself to adapt on a long-term evolutionary time scale.

How best to combine Hg, ambiguity, and value into a single measure of environmental struc-
ture remains an open question. It is striking how difficult it is to quantify the evolutionary task
posed by the environment even in relatively simple static resource models, where sensory and
behavioral capacities are limited.

What becomes of our original hypothesis that adaptability depends unimodally on the degree
of environmental structure? Now that we view environmental structure as involving at least Hg,
ambiguity, and value, it would seem that adaptability does not depend unimodally on any of these
components taken singly. One would expect adaptability to fall monotonically with ambiguity
and rise monotonically with value. It is still unclear how adaptability depends on Hg, everything
else being equal, but it seems possible that this relationship is also monotonic. Consider the
64x64, 8x48, and 34x42 environments (see Figures 4, 5, and 7), all of which would appear to
have minimal ambiguity and maximum value. Adaptation falls monotonically as Hg increases
for these environments (see Figure 14).

Still, our original hypothesis does receive some support if we distinguish the quantity and the
pragmatic tmport of the detectable information about the environment. Hg measures the former,
while ambiguity and value reflect the latter. Pooling what we have learned prompts us to frame a
more precise hypothesis about the unimodal dependence of adaptability on environmental struc-
ture: Adaptability is low if the agents have either too little or too much information about the
pragmatic import of local environmental conditions. In other words, it is difficult for adaptation
to build useful connections between a population’s sensory input and behavioral output to the

extent that the population is either deprived of, or flooded with, information that makes a dif-
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ference. Information that makes a difference might be missing either because the agents’ sensory
limitations hide useful structure in the environment, as in the 1x 1 environment or in other highly
ambiguous environments, or because the environment simply lacks useful structure, as in the flat
environment or in other environments which have little or no value.

We conjecture that this unimodal dependence of adaptability on environmental structure,
when understood as explained in the paragraph above, will be observable in our static resource
models, and in other adapting systems, both artificial and natural. New forms of interaction
between adaptability and environmental structure may well be generated in dynamic environ-
ments in which the process of adaptation itself changes environmental structure. By extending
and developing the methods illustrated here, these conjectures can all be subjected to empirical

computational tests.
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Figure 1: Top-down view of the random environment in a 128 x 128 toroidal lattice of sites.
Resource levels (depicted with gray scale) are shown from the agents’ perspective: agents can
distinguish only 4 resource levels, even though sites objectively can have 256 different resource

levels.

Figure 2: Top-down view of the 1 x 1 sinewave resource field (see Figure 1 caption).

Figure 3: Top-down view of the 16 x 16 sinewave resource field (see Figure 1 caption).

Figure 4: Top-down view of the 64x 64 sinewave resource field (see Figure 1 caption).

Figure 5: Top-down view of the 8x48 sinewave resource field (see Figure 1 caption). Note that

the 128 x 128 lattice of sites imposes a coarse grain on the sinewaves.

Figure 6: Top-down view of the 14x 63 sinewave resource field (see Figure 1 caption). Note that

the 128 x 128 lattice of sites imposes a coarse grain on the sinewaves.

Figure 7: Top-down view of the 34x42 sinewave resource field (see Figure 1 caption). Note that

the 128 x 128 lattice of sites imposes a coarse grain on the sinewaves.

Figure 8: Top-down view of the 16 x 16 sinewave resource field in which the resource levels in

fifty percent of the sites have been replaced by flat values (see Figure 1 caption).

Figure 9: Top-down view of the 16 x 16 sinewave resource field in which the resource levels in

fifty percent of the sites have been replaced by random values (see Figure 1 caption).
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Figure 10: Population size as a function of time for the 1x 1 sinewave environment at 5 mutation

rates.

Figure 11: Population size as a function of time for the 16 x 16 sinewave environment at 5 mutation

rates.

Figure 12: Equilibrium population sizes as a function of mutation rate in the 1x1 and 16x16

sinewave environments. Five mutation rates were tested in each environment.

Figure 13: Adaptability, Ap(F), as a function of environment and sensory noise. The environ-
ments include flat, random, a number of symmetrical (identical z and y frequency) sinewaves, and
one asymmetrical (34x42) sinewave. The environments are ordered by uncertainty of detectable

neighborhoods, Hg.

Figure 14: Adaptability, Ap(E), as a function of environment and sensory noise. In addition
to those shown in Figure 13, the environments include one more symmetrical (64x64) sinewave
environment and two more asymmetrical (8x48 and 14x63) sinewave environments. The envi-

ronments are ordered by uncertainty of detectable neighborhoods, Hg.

Figure 15: Side view of the 1 x 1 sinewave environment in a 128 x 128 toroidal lattice of sites,
showing both the objective resource field and the agents’ perspective of it. Note that, although
the objective resource level at a site can have one of two hundred and fifty six possible values,

the agents can distinguish only four resource levels.

Figure 16: Side view of the 4 X 4 sinewave resource field in a 128 x 128 toroidal lattice of sites,
showing both the objective resource field and the agents’ perspective of it. Compare with the

previous figure.
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Figure 17: Adaptability, Ap(E), as a function of the density with which sites in a 16x 16 sinewave

environment have been substituted with flat resource levels.

Figure 18: Adaptability, Ap(E), as a function of the density with which sites in a 16x 16 sinewave

environment have been substituted with random resource levels.
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