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Artificial life (also known as “ALife”) is a broad, interdisciplinary endeavor that
studies life and life-like processes through simulation and synthesis. The goals of
this activity include modelling and even creating life and life-like systems, as
well as developing practical applications using intuitions and methods taken
from living systems. Artificial life both illuminates traditional philosophical
questions and raises new philosophical questions. Since both artificial life and
philosophy investigate the essential nature of certain fundamental aspects of
reality like life and adaptation, artificial life offers philosophy a new perspective
on these phenomena. This chapter provides an introduction to current research
in artificial life and explains its philosophical implications.

The Roots of Artificial Life

The phrase “artificial life” was coined by Christopher Langton. He envisioned a
study of life as it could be in any possible setting, and he organized the first
conference that explicitly recognized this field (Langton 1989). There has since
been a regular series of conferences on artificial life and a number of academic
journals have been launched to publish work in this new field.

Artificial life has broad intellectual roots, and shares many of its central
concepts with other, older disciplines: computer science, cybernetics, biology,
complex systems theory and artificial intelligence, both symbolic and
connectionist (on the topics see chapters 3, 9 and 14).

John von Neumann (von Neumann 1966) implemented the first artificial
life model (without referring to it as such), with his famous creation of a self-
reproducing, computation-universal entity, using cellular automata (see
Glossary). Von Neumann was trying to understand some of the fundamental
properties of living systems, such as self-reproduction and the evolution of
complex adaptive structures. His approach was to construct simple formal
systems that exhibited those properties. This constructive and abstract
methodology typifies contemporary artificial life, and cellular automata are still
widely used in the field.

At about the same time, cybernetics (Wiener 1948) applied two new tools
to the study of living systems: information theory and the analysis of self-
regulatory processes (homeostasis). One of the characteristics of living systems is
their spontaneous self-regulation: their capacity to maintain an internal
equilibrium in the face of changes in the external environment. This capacity is
still a subject of investigation in artificial life. Information theory concerns the



transmission of signals independently of their physical representation. The
abstract and material-independent approach of information theory is
characteristic of artificial life.

Biology’s contribution to artificial life include a wealth of information
about the life forms found on Earth. Artificial life seeks to understand all forms
of life that could exist anywhere in the universe, and detailed information about
life on Earth is one good clue about this. Biology has also provided artificial life
with models that were originally devised to study a specific biological
phenomenon. For example, random Boolean networks (discussed below), which
were originally devised by Stuart Kauffman as models of gene regulation
networks, are now a paradigm of artificial life research.

Physics and mathematics have also had a strong influence on artificial life.
One example is the study of cellular automata as exemplars of complex systems
(Wolfram 1994). In addition, artificial life’s methodology of studying model
systems that are simple enough to have broad generality and to permit
quantitative analysis was pioneered in statistical mechanics and dynamical
systems. For example, the Ising model consists of a lattice of up and down
“spins” that have simple local interactions and that are randomly perturbed by
“thermal” fluctuations. This model is so abstract that it contains almost none of
the detailed internal physical structure of such materials as a cup of water or a
bar of iron. Nevertheless, the model provides a precise quantitative description
of how liquid water turns into water vapor or a bar of iron loses its
magnetization as temperature rises.

Artificial life also has deep roots in artificial intelligence (AI). Living and
flourishing in a changing and uncertain environment seems to require at least
rudimentary forms of intelligence. Thus, the subject matter of artificial life and AI
overlap. Their methodology is also similar, since both study natural phenomena
by building computational models. The computational methodology of artificial
life is especially close to the connectionist movement that has recently swept
through AI and cognitive science.

The Methodology of Artificial Life

The computer model methodology of artificial life has several virtues. The
discipline of expressing a model in feasible computer code requires precision and
clarity. It also insures that hypothesized mechanisms are feasible. Computer
models also facilitate the level of abstraction required of maximally general
models of phenomena. The bottom-up architecture of artificial life models creates
an additional virtue. Allowing micro-level entities continually to affect the
context of their own behavior introduces a realistic complexity that is missing
from analytically studied mathematical models. Analytically solvable
mathematical models can reveal little about the global effects that emerge from a
web of simultaneous nonlinear interactions. The obvious way to study the effects
of these interactions is to build bottom-up models and then empirically
investigate their emergent global behavior through computer simulations.

There is an important difference between the modeling strategies AI and
ALife typically employ. Most traditional AI models are top-down-specified serial
systems involving a complicated, centralized controller that makes decisions
based on access to all aspects of global state. The controller’s decisions have the



potential to affect directly any aspect of the whole system. On the other hand,
many natural living systems exhibiting complex autonomous behavior are
parallel, distributed networks of relatively simple low-level “agents” that
simultaneously interact with each other. Each agent’s decisions is based on
information about only its own local situation, and its decisions directly affect
only its own local situation. ALife’s models characteristically follow nature’s
example. The models themselves are bottom-up-specified parallel systems of
simple agents interacting locally. The models are repeatedly iterated and the
resulting global behavior is observed. Such lower-level models are sometimes
said to be “agent-based” or “individual-based.” The whole system’s behavior is
represented only indirectly. It arises out of the interactions of a collection of
directly represented parts (“agents” or “individuals”). Two ALife models
illustrating this pattern are described in this section below.

The parallel, distributed character of ALife models is similar to the
structure of the models studied in the connectionist (parallel distributed
processing, neural network) movement. Both involve bottom-up models in
which a population of autonomous agents follows simple local rules. In fact, the
agents in many artificial life models are themselves controlled by internal
connectionist nets. But there are at least three important differences between
typical artificial life models and the connectionist models that have attracted the
most attention, such as feed-forward networks that learn by the back-
propagation algorithm.

•  First, artificial life and connectionism depend on different kinds of
learning algorithms. Connectionist models often employ supervised
learning algorithms like back-propagation. These learning algorithms are
typically turned on when the network is learning and then turned off
when the acquired information is applied. This distinction between
training and application phases is sometimes unnatural. In addition,
supervised learning algorithms require an omniscient teacher, which is
also often unnatural. By contrast, the learning algorithms employed in
artificial life models usually avoid these criticisms. They are typically
unsupervised and in continual operation. Often the algorithm is simply
natural selection.

•  Second, human intervention and interpretation play different roles in
artificial life and connectionism. Typical connectionist models passively
receive sensory information prepackaged by a human designer and
produce output that must be interpreted by a human designer. In artificial
life models, on the other hand, a micro-level agent’s sensory input comes
directly from the environment in which the agent lives. In many cases, this
environment is itself part of the computer model. A human designer
originally creates the model, of course, but the specific way it impinges on
the agents in typically the result of an unpredictable collection of low-level
interactions in the model. In ALife models the micro-level agents’ output
is to perform actions in their environment, and those actions have direct
consequences for the agents’ well being. Thus their output has an intrinsic
meaning regardless of human interpretation.

•  Third, artificial life and connectionism typically seek different kinds of
dynamical behavior. Much connectionist modeling aims to produce
behavior that settles into an equilibrium. This is because both learning and



applying knowledge are conceived as fixed and determinate goals. By
contrast, artificial life views much of the distinctive behavior of living
systems as a process of continual creative evolution, so the aim of many
ALife models is an open-ended evolutionary dynamic that is forever far
from equilibrium.
The biological world is often viewed as a nested hierarchy of levels. These

levels include (among other things) chemicals, organelles, cells, organs,
organisms, and ecologies. Artificial life models usually explicitly represent one
level with the aim of generating the characteristic phenomena of a higher level.
One of the ambitious goals of artificial life is the search for a single model that
generates the behavior of all these levels from the explicit specification of only
the lowest level. So far, the field has had difficulty producing a model that
generates even two levels of emergent phenomena.

The most primitive phenomenon explored by some artificial life models is
self-organization. Such models study how structure can emerge from
unstructured ensembles of initial conditions, such as models of chemical soups in
which fundamental structures such as self-maintaining autocatalytic networks
might be seen to emerge. A host of models target the organismic level,
sometimes with significant interactions between organisms.  These models
typically allow changes in the organisms as part of the system’s dynamics (e.g.,
through a genetic mechanism). The most common goal of research using these
models is to identify and elucidate structure that emerges in the ensuing
evolutionary process.  Some models fit in between the chemical level and the
organismic level, aiming to understand development by modeling interacting
cells.  Other models are inter-organismic, in the sense that they aim explicitly to
model interactions between different types of organisms or agents.  These
models often contain elements of game theory.

Many artificial life models are designed not to represent known biological
systems but to generate wholly new and extremely simple instances of life-like
phenomena.  The simplest example of such a system is the so-called “Game of
Life”, devised by the mathematician John Conway in the 1960s (Berlekamp et al.
1982). Conway’s Game of Life can be thought of as a model at the physical or
chemical level, embodying an extremely simple and unique form of “chemical”
interactions. However, the self-organization exhibited in the Game of Life is not a
representation of chemical self-organization in the real world but a wholly new
instance of this phenomenon. The Game of Life is a two-state two-dimensional
cellular automaton with a trivial nearest-neighbor rule. Think of this “game” as
taking place on a two-dimensional rectangular grid of cells, analogous to a huge
checker-board. Time advances in discrete steps, and a cell’s state at a given time
is determined by the states of its eight neighboring cells according to the
following simple “birth-death” rule: a “dead” cell becomes “alive” if and only if
exactly 3 neighbors are just “alive,” and a “living” cell “dies” if and only if fewer
than 2 or more than 3 neighbors are just “alive.” From inspection of the birth-
death rule, nothing particular can be discerned regarding how the whole system
will behave. But when the system is simulated, a rich variety of complicated
dynamics can be observed and a complex zoo of structures can be identified and
classified (blinkers, gliders, glider guns, logic switching circuits, etc.). It is even
possible to construct a universal Turing machine in the Game of Life, by
cunningly positioning the initial configuration of living cells.  In such



constructions gliders perform a role of passing signals. Analysing the
computational potential of cellular automata on the basis of glider interactions
has become a major research thrust.

An example of an organismic level artificial life system is Tierra (Ray
1992). This ALife system consists of “organisms” that are actually simple, self-
replicating computer programs populating an environment consisting of
computer memory and consuming CPU time as a resource. A Tierran genotype
consists of a string of machine code, and each Tierran creature is a token of a
Tierran genotype. A simulation starts when computer memory is inoculated with
a single self-replicating program, the ancestor, which is then left to self-replicate
on its own. The ancestor and its descendants repeatedly replicate, until the
available memory space is teeming with creatures that all share the same
ancestral genotype. To create space in memory for new descendants, older
creatures are continually removed from the system. Errors (mutations)
sometimes occur when a creature replicates, so the population of Tierra creatures
evolves by natural selection. If a mutation allows a creature to replicate faster,
that genotype tends to take over the population. Over time, the ecology of
Tierran genotypes becomes remarkably diverse. Quickly reproducing parasites
that exploit a host’s genetic code evolve, and this prompts the evolution of new
creatures that resist the parasites. After millions of CPU cycles, Tierra typically
contains many kinds of creatures exhibiting a variety of competitive and
cooperative ecological relationships.

Computer simulation is crucial for the study of complex adaptive systems.
It plays the role that observation and experiment play in more conventional
science. The complex self-organizing behavior of the Game of Life would never
have been discovered without simulating thousands of generations for millions
of sites. Similarly, it would have been impossible to discover the emergence of
complex ecological interactions in Tierra without simulating many millions of
generations. Simulation of large-scale complex systems is the single most crucial
development that has enabled the field of artificial life to flourish and distinguish
itself from precursors such as cybernetics.

Rather than merely producing computer simulations, some artificial life
research aims to implement systems in the real world. The products of this
activity are physical devices such as robots that exhibit characteristic life-like
behavior. Some of these implementations are motivated by the concern to
engineer practical devices that have some of the useful features of living systems,
such as robustness, flexibility, and autonomy. But some of this activity is
primarily theoretical, motivated by the belief that the best way to confront the
hard questions about how life occurs in the physical world is to study real
physical systems. Again, there is an analogy with biological levels.  The
“chemical” level is represented by work on evolvable hardware, often using
programmable logic arrays, which attempts to use biologically-inspired adaptive
processes to shape the configuration of micro-electronic circuitry.  The
“organismic” level is represented by new directions in biologically-inspired
robotics, such as using evolutionary algorithms to automate the design of robotic
controllers. A swarm of robots communicating locally to achieve some collective
goal is an example at the “population” level.  An “ecological” level might be
represented by the Internet along with its interactions with all its users on
computers distributed around the world.



Emergence

Both living systems and artificial life models are commonly said to exhibit
emergent phenomena; indeed, many consider emergence to be a defining feature
of life. However, the notion of emergence remains ill defined. In general,
emergent phenomena share two broad hallmarks: they are constituted by and
generated from underlying phenomena, and yet they are also autonomous from
those underlying phenomena. There are abundant examples of apparent
emergent phenomena, and most involve life or mind. Yet the two hallmarks of
emergence seem inconsistent or metaphysically illegitimate: How can something
be autonomous from underlying phenomena if it is constituted by and generated
from them? This is the problem of emergence.  A solution would both dissolve
the appearance of illegitimate metaphysics and enfold emergence in constructive
scientific explanations of phenomena involving life and mind.

One can distinguish emergent properties, emergent entities, and emergent
phenomena. Being alive, for example, is an emergent property, an organism is an
emergent entity, and the life history of an organism is an emergent phenomenon.
An entity with an emergent property is an emergent entity, and an emergent
phenomenon involves an emergent entity possessing an emergent property. So
the first step toward solving the problem of emergence is to explain the notion of
an emergent property. There are three main views of what an emergent property
is.

According to the first view, emergent properties apply only to “wholes”
or “totalities”, not to their component “parts” considered in isolation (e.g., Harré
1985, Baas 1994).  For example, the constituent molecules in a cup of water,
considered individually, do not have properties like fluidity or transparency,
though these properties do apply to the whole cup of water. The “wholes” at one
level of analysis are sometimes “parts” of a larger “whole” at a higher level of
analysis, so a hierarchy can contain successive levels of this sort of emergence.
This view easily explains the two hallmarks of emergence. Macro-level emergent
phenomena are constituted from and generated by micro-level phenomena in the
trivial sense that wholes are constituted and generated by their constituents; and
emergent phenomena are autonomous from underlying phenomena in the
straightforward sense that emergent properties do not apply to the underlying
entities. This notion of emergence is very broad, applies to a large number of
intuitive examples of emergent phenomena, and corresponds to the compelling
picture of reality consisting of autonomous levels of phenomena. Its breadth is its
greatest weakness, however, for it applies to all macro-properties that are not
possessed by micro-entities. Macro-properties are usually classified into two
kinds: genuine emergent properties and mere “resultant” properties. Resultant
properties are those that can be predicted and explained from the properties of
the components. For example, a circle consists of a collection of points, and the
individual points have no shape. So being a circle is a property of a “whole” but
not its constituent “parts.” Thus being a circle is an emergent property according
to the first view. However, if you know that all the points in a geometrical figure
are equidistant from a given point, then you can conclude that the figure is a
circle. So being a circle is a resultant property. To distinguish emergent from
resultant properties one must turn to other views.



The second main view construes emergent properties as supervenient
properties with causal powers that are irreducible to the causal powers of micro-
level constituents (e.g., Kim 1999). On this view, supervenience explains the
sense in which the underlying processes constitute and generate the emergent
phenomena, and irreducible causal powers explain the sense in which they are
autonomous from underlying phenomena. These irreducible causal powers give
emergent properties a dramatic form of ontological novelty that many people
associate with the most puzzling kinds of emergent phenomena, such as
consciousness. However, an irreducible but supervenient causal power by
definition cannot be explained in terms of the aggregation of the micro-level
potentialities. No evident mechanism explains these irreducible supervenient
powers, so they must be viewed as primitive or “brute” facts of nature. In
addition, this strong form of emergence seems to be scientifically irrelevant.
Illustrations of it in recent scientific literature almost universally focus on one
isolated example: Sperry’s explanation of consciousness from over thirty years
ago (Sperry 1969). There is little if any evidence that this form of emergence is
empirically relevant in the sciences studying emergent phenomena.

A third view of emergence is poised midway between the first two. It
refers to the resultant aggregate global behavior of complex systems. In this
sense, a system’s macrostate is emergent just in case it can be derived from the
system’s boundary conditions and its micro-level dynamical process but only
through the process of iterating and aggregating all the micro-level effects (e.g.,
Bedau 1997a). In this case, the micro-level phenomena clearly constitute and
generate the macro-level phenomena. At the same time, the macro-level
phenomena are autonomous in that the only way to recognize or predict them is
by empirically observing the macro-level effect of aggregating all the micro-level
phenomena. In effect, this view identifies emergent properties with a special
subset of resultant properties: those that cannot be predicted or explained except
by empirically aggregating the interactions among micro-level entities. This form
of emergence is common in complex systems found in nature. Artificial life’s
models also exhibit it, since their bottom-up dynamics consists of the continual
iteration of micro-level interactions. This view attributes the unpredictability and
unexplainability of emergent phenomena to the complex consequences of
myriad, non-linear and context-dependent local micro-level interactions.
Emergent phenomena can have causal powers on this view, but only by means of
aggregating micro-level causal powers. There is nothing inconsistent or
metaphysically illegitimate about underlying processes constituting and
generating phenomena by iteration and aggregation. Furthermore, this form of
emergence is prominent in scientific accounts of exactly the natural phenomena
like life and mind that apparently involve emergence. However, this form of
emergence sheds no light on those mysterious emergent phenomena, like
consciousness, that science still cannot explain. In addition, the autonomy of
these kinds of emergent phenomena seems to be merely epistemological rather
than ontological. Emergent phenomena are epistemologically autonomous in the
sense that knowledge of the underlying phenomena does not provide knowledge
about the emergent phenomena. However, metaphysically, the emergent
phenomena seem wholly dependent on the constituent phenomena, since
emergent causal powers result from micro-level causal powers. This will not



satisfy those who think emergent phenomena have a strong form of ontological
autonomy.

Artificial life can be expected to play an active role in the future
philosophical debate about emergence and related notions like supervenience,
reduction, complexity, and hierarchy. Living systems are one of the primary
sources of emergent phenomena, and artificial life’s bottom-up models generate
impressive macro-level phenomena wholly out of micro-level interactions.
Exploration and modification of these models is a constructive way to analyze
the nature and causes of different kinds of emergent phenomena.

Adaptationism

Adaptive evolutionary explanations are familiar from high school biology. It is a
cliché to explain the giraffe’s long neck as an adaptation for browsing among the
tops of trees, on the grounds that natural selection favored longer-necked giraffes
over their shorter-necked cousins. But the scientific legitimacy of these adaptive
explanations is controversial, largely because of a classic paper by Stephen Jay
Gould and Richard Lewontin (1979). Gould and Lewontin directly challenge
adaptationism: the thesis that the activity of pursuing adaptive explanations of
biological traits is a legitimate part of empirical science. They accept that
adaptive explanations are appropriate in some contexts, but they despair of
identifying those contexts in any principled and rigorous way. Biology provides
many alternatives to adaptive explanations, such as explanations appealing to
allometry, genetic drift, developmental constraints, genetic linkage, epistasis, and
pleiotropy. But Gould and Lewontin complain that those alternatives receive
only lip-service. The presupposition that a trait is an adaptation and so deserves
an adaptive explanation is treated as untestable. The fundamental challenge for
adaptationism raised by Gould and Lewontin, then, is to find some empirical
method for testing when an adaptive explanation is needed. This problem is
often especially acute in artificial life. Those studying artificial models have the
luxury of being able to collect virtually complete data, but this mass of
information only compounds the problem of identifying which evolutionary
changes are adaptations.

The canonical response to Gould and Lewontin makes two claims. The
first claim is that specific adaptive hypotheses, hypotheses about the specific
nature of a character’s adaptation, are testable. Second, although the general
hypothesis that a trait is an adaptation might itself not be testable, it is a working
hypothesis and empirical science normally treats working hypotheses as
untestable. For example, Richard Dawkins claims that “hypotheses about
adaptation have shown themselves in practice, over and over again, to be easily
testable, by ordinary, mundane methods of science” (Dawkins, 1983, pp. 360f).
Dawkins’s point is that specific adaptive hypotheses have observable
consequences that can be checked. The canonical response reflects and explains
evolutionary biology’s emphasis on formulating and testing specific adaptive
hypotheses. But this response does not address the fundamental challenge to
adaptationism, for that challenge is about the testability of general adaptive
hypotheses, hypotheses to the effect that a trait is an adaptation. Different
specific adaptive hypotheses usually have different observable consequences. A
general adaptive hypothesis entails that some specific adaptive hypothesis is



true, but it gives no indication which one is true. So the general adaptive
hypothesis makes no particular empirical prediction. Dawkins admits that
general adaptive hypotheses cannot be tested. “It is true that the one hypothesis
that we shall never test is the hypothesis of no adaptive function at all, but only
because that is the one hypothesis in this whole area that really is untestable”
(1983, p. 361). Dawkins can defend the appeal to adaptive explanations when a
specific adaptive hypothesis has been corroborated. But in the absence
this—which is the typical situation—Dawkins must concede Gould’s and
Lewontin’s fundamental challenge.

Artificial life has been used to develop and illustrate a new defense of
adaptationism. It is argued that it is possible to test general adaptive hypotheses
empirically, by recording and analyzing so-called “evolutionary activity”
information collected from the evolving system (Bedau 1996, Bedau & Brown
1999). The fundamental intuition behind this method is that we can detect
whether an item (gene, gene complex, genotype, etc.) is an adaptation by
observing the extent to which it persists in the face of selection pressures.
Whenever an item that is subject to heritable variation is “active” or expressed,
natural selection has an opportunity to provide feedback about its adaptive
value, its costs and benefits.  If it persists and spreads through a population
when it is repeatedly active, and especially if it exhibits significantly more
activity than one would expect to see if it had no adaptive value, then we have
positive evidence that the item is persisting because of its adaptive value.  This
means that we have positive evidence that it is an adaptation and deserves an
adaptive explanation, even if we have no idea about its specific adaptive
function. Since natural selection is not instantaneous, maladaptive items persist
for a while before they are driven out by natural selection. Adaptations are
distinguished by accruing much more activity than would be expected in a non-
adaptive item. A general way to measure the activity expected of non-adaptive
items is to construct a “neutral shadow” of the target system—that is, a system
that is similar to the target in all relevant respects except that none of the items in
it have any adaptive significance. The activity in the neutral shadow is a no-
adaptation null hypothesis for the target system. If the target system shows
significantly more activity than the neutral shadow, this excess activity must be
due to natural selection and the target system must contain adaptations. The
evolutionary activity method responds directly to Gould and Lewontin. It
provides an empirical method for determining when evolution is creating
adaptations. Rather than just assuming that traits are adaptations, it puts this
assumption to empirical test. Another advantage of the activity method is that
statistics based on activity information can be used to measure various aspects of
the dynamics of adaptive evolution, thus allowing the process of adaptation in
different systems to be classified and quantitatively compared (Bedau et al. 1997,
Bedau et al. 1998). One weakness of the evolutionary activity method is that
practical problems sometimes make activity data difficult to collect. Another
weakness is that genetic hitchhikers—non-adaptive or maladaptive traits that
persist because of a genetic connection to an adaptive trait—can accumulate
more activity than expected in a neutral shadow. Thus, a trait that is not an
adaptation can have significant excess activity if it is connected to a trait that is
an adaptation. Significant excess activity in a cluster of traits shows that there are
adaptations in the cluster, but it does not separate out the hitchhikers.



The adaptationist perspective on evolution emphasizes natural selection’s
role in creating the complex adaptive structures found in living systems.
Artificial life has been the source of a new and fundamental challenge to this
whole perspective. Stuart Kauffman (1993, 1995) has used artificial life models to
show that many features of metabolisms, genetic networks, immune systems,
and ecological communities should be viewed not as the products of selection
but largely as the spontaneous self-organized behaviors of certain abstract
complex systems. Kauffman also argues that spontaneous self-organized
structures—what he calls “order for free” (Kauffman 1995)—explain both life’s
origin and its subsequent ability to evolve. Kauffman can make sweeping claims
about order for free because the artificial life models he studies are abstract
enough to apply to a wide variety of contexts. Random Boolean networks are one
such class of models. These consist of a finite collection of binary (ON, OFF)
variables with randomly chosen input and output connections. The state of each
variable at each step in discrete time is governed by some logical or Boolean
function (AND, OR, etc.) of the states of variables that provide input to it. The
network is started by randomly assigning states to each variable, and then the
connections and functions in the network determine the successive state of each
variable. Since the network is finite, it eventually reaches a state it has previously
encountered, and from then on the network will forever repeat the same cycle of
states. Different network states can end up in the same state cycle, so a state cycle
is called an attractor. Kauffman found that the number of variables in the
network, the number of connections between the variables, and the character of
the Boolean functions determine many biologically crucial properties of the
networks. These properties include the number and length of attractors, the
stability of attractors to perturbation and mutation, etc. If the variables are highly
connected, then the network’s attractors contain so many states that the time it
takes to traverse the attractor vastly exceeds the lifetime of the entire universe.
Furthermore, any perturbation or mutation in the network causes a vast change
in its behavior. For all practical purposes, the network behaves chaotically. The
network acts differently when each variable takes input from only a biologically
plausible number of other variables and when the variables are governed by
biologically realistic Boolean functions. In this case, the network has a tiny
number of attractors, it maintains homeostatic stability when perturbed, and
mutations have limited consequences; in other words it exhibits “order for free.”
Furthermore, these biologically realistic Boolean networks explain a number of
empirically observed features of biological systems, such as how the number of
different cells types and cell replication times vary as a function of the number of
genes per cell. Kauffman’s non-adaptationist explanations of the origins of order
are controversial, partly because of the sweeping scope of his analysis. But the
suggestion that self-organization rather than natural selection can explain much
of the structure in living systems is plausible. The issue is not whether self-
organization explains structure, but how much.

The problem of adaptationism is as acute in artificial life as it is in biology.
Artificial life can make a distinctive contribution to the debate, for the
evolutionary processes studied by artificial life provide many diverse examples
of the process of adaptation. Furthermore, the systems can be analyzed with the
kind of detail and rigor that is simply impossible to achieve in the biosphere,
because the historical data are unavailable or impractical to examine. For



analogous reasons, we can expect artificial life to contribute to our
understanding of many other fundamental issues in the philosophy of biology,
such as the nature of functions, the nature of species, whether and how selection
operates at different biological levels, the nature of the niche, and the nature of
the relationship between organisms and their environment.

Evolutionary Progress

The evolution of life shows a remarkable growth in complexity. Simple
prokaryotic one-celled life lead to more complex eukaryotic single-celled life,
which then lead to multicellular life, then to large-bodied vertebrate creatures
with complex sensory processing capacities, and ultimately to highly intelligent
creatures that use language and develop sophisticated technology. This
illustration of evolution’s creative potential has led some to propose a ladder of
complexity hypothesis according to which open-ended evolutionary processes
have an inherent, law-like tendency to create creatures with increasingly
complicated adaptive structure. But the evolution of life is equally consistent
with the denial of the ladder of complexity. The observed progression could be a
contingent result of evolution rather than a reflection of any inherent tendency.
The ladder of complexity hypothesis is difficult to test because we do not have a
variety of different histories of life to compare. A sample size of one makes it
difficult to distinguish inherent trends from artifacts.

Stephen Jay Gould (1989) devised an ideal way to address this issue,
namely the thought experiment of replaying the tape of life. Imagine that the
process of evolution left a record on a tape. Gould’s thought experiment consists
in rewinding the evolutionary process backward in time and then replaying it
again forward in time but allowing different accidents, different contingencies to
reshape the evolution of life. The evolution of life is rife with contingencies.
Repeatedly replaying the tape of life with novel contingencies could produce as
large a sample of evolutionary histories as desired. It would be relatively
straightforward to determine whether a general pattern emerges when all the
evolutionary trajectories are compared.

There is substantial controversy about the outcome of Gould’s thought
experiment. Gould himself suggests that “any replay of the tape would lead
evolution down a pathway radically different from the road actually taken”
(1989, p. 51). He concludes that the contingency of evolution will debar general
laws like the hypothesized ladder of complexity. Daniel Dennett (1995) draws
exactly the opposite conclusion. Dennett argues that certain complex features like
sophisticated sensory processing provide a distinct adaptive advantage. Thus,
natural selection will almost inevitably discover significantly advantageous
features that are accessible from multiple evolutionary pathways. Examples of
multiple independent evolutionary convergence, such as flight and eyesight,
illustrate this argument. Dennett concludes that replaying life’s tape will almost
inevitably produce highly intelligent creatures that use language and develop
sophisticated technology.

Artificial life can make number of contributions to this debate. Experience
in artificial life has shown time and again that expectations about the outcome of
thought experiments like replaying life’s tape are highly fallible. The only sure
way to determine what to expect is to create the relevant model and observe the



results of repeated simulation. In fact, artificial life is exactly where this sort of
modeling activity occurs. A central goal of artificial life is to discover the inherent
trends in evolving systems by devising a model of open-ended evolution,
repeatedly replaying life’s tape with different historical contingencies and
searching for patterns that hold across all the results. The best evidence in favor
of the ladder of complexity hypothesis would come from showing that a
tendency toward increasing adaptive complexity is the norm in such ALife
models. However, no one has yet conducted the experiment of replaying life’s
tape, because no one has yet been able to create a system that exhibits continual
open-ended evolution of adaptive complexity. Achieving this goal is one of the
key open problems in artificial life (Bedau et al. 2000).  All conjectures about the
ladder of complexity will remain unsettled until one can actually replay the tape
of life.

The Nature of Life

Philosophy traditionally addressed the nature of life but most philosophers
ignore the issue today, perhaps because it seems too “scientific.”  At the same
time, most biologists also ignore the issue, perhaps because it seems too
“philosophical.”  The advent of artificial life raises the question anew, for two
reasons. Modeling the fundamental features of living systems presupposes an
understanding of life, and new artificial life systems push the boundaries of what
life could be.

There are three prominent views about the nature of life: life as a cluster of
properties, life as metabolization, and life as evolution. The cluster conception
takes two forms, depending on whether the properties in the cluster are taken to
be individually necessary and jointly sufficient for life. Skeptics argue that life is
characterized merely by a loose cluster of properties typically but not necessarily
possessed by living entities. This view treats something as alive if it possesses a
sufficient number of properties in the cluster, but no precise number of
properties is sufficient. On this view, the diversity of living forms have only a
family resemblance. Viewing life as a loose cluster of properties provides a
natural explanation of why life has vague boundaries and borderline cases. Life
is also sometimes characterized by a list of properties intended to provide
something much closer to individually necessary and jointly sufficient
conditions. Ernst Mayr (1982) produced a comprehensive list of such properties:

1. Living systems have an enormously complex and adaptive organization.
2. Organisms are composed of a chemically unique set of macromolecules.
3. Living phenomena are predominantly qualitative, not quantitative.
4. Living systems consist of highly variable groups of unique individuals.
5. Organisms engage in purposeful activities by means of evolved genetic

programs.
6. Classes of organisms have historical connections of common descent.
7. Organisms are the product of natural selection.
8. Biological processes are especially unpredictable.

Cluster conceptions of life account for the characteristic hallmarks of life,
although they do this merely by fiat. Lists like Mayr’s raise rather than answer



the question why this striking collection of features is present in an indefinite
diversity of natural phenomena. The main drawback of all cluster conceptions is
that they inevitably make life seem rather arbitrary or mysterious. A cluster
conception cannot explain why any particular cluster of properties is a
fundamental and ubiquitous natural phenomenon.

Schrödinger illustrated the second view of life when he proposed
persistence in the face of the second law of thermodynamics by means of the
process of metabolization as the defining feature of life.

It is by avoiding the rapid decay into the inert state of “equilibrium” that
an organism appears so enigmatic; . . .  How does the living organism
avoid decay?  The obvious answer is: By eating, drinking, breathing and
(in the case of plants) assimilating.  The technical term is metabolism.
(Schrödinger 1969, p. 75)

Living systems need some way to self-maintain their complex internal structure.
So metabolization seems to be at least a necessary condition of all physical forms
of life. The view that life centrally involves the process of metabolization also
nicely explains our intuition that a crystal is not alive. There is a metabolic flux of
molecules only at the crystal’s edge, not inside it. One drawback of
metabolization as an all-encompassing conception of life is that many
metabolizing entities seem not to be alive and not to involve life in any way.
Standard examples include a candle flame, a vortex, and a convection cell. A
second problem is whether metabolization can explain the hallmarks of life
(recall Mayr’s list).  It is doubtful whether metabolization can explain those
characteristics on Mayr’s list that depend on evolution.

The third main conception of life focuses on the evolutionary process of
adaptation. The central idea is that what is distinctive of life is the way in which
adaptive evolution automatically fashions new and intelligent strategies for
surviving and flourishing as local environments change. As John Maynard Smith
explains:

We shall regard as alive any population of entities which has the
properties of multiplication, heredity and variation.  The justification for
this definition is as follows: any population with these properties will
evolve by natural selection so as to become better adapted to its
environment.  Given time, any degree of adaptive complexity can be
generated by natural selection. (Maynard Smith 1975, p. 96f)

The view of life as evolution has two forms. Maynard Smith illustrates one form,
according to which living systems are the entities in an evolving population.
Recently, Bedau (1996, 1998a) has argued that, in fact, an evolving system itself
should be viewed as alive in the primary sense. One virtue of the conception of
life as evolution is that it explains why Mayr’s hallmarks of life coexist in nature.
We would expect life to involve the operation of natural selection producing
complex adaptive organization in historically connected organisms with evolved
genetic programs. The random variation and historical contingency in the
evolutionary process explains why living phenomena are especially qualitative
and unpredictable and involve unique and variable individuals with frozen
accidents like chemically unique macromolecules. This view can also explain
why metabolism is so important in living systems, for a metabolism is a



physically necessary prerequisite in any system that can sustain itself long
enough to adapt and evolve. There are two main objections to viewing life as
evolution. The first is that it seems to be entirely contingent that life forms were
produced by an evolutionary process. The Biblical story of Adam and Eve shows
that is easy to imagine life forms in the absence of any evolutionary process. A
second objection calls attention to evolving systems that seem devoid of life.
Viruses and prions evolve but are questionably alive, and cultural evolution
provides much starker counterexamples.

The advent of artificial life has revitalized investigation into the nature of
life. This is partly because one can simulate or synthesize living systems only if
one has some idea what life essentially is. Artificial life’s self-conscious aim to
discern the general nature of life as it could be encourages liberal
experimentation with novel life-like organizations and processes. Thus, artificial
life both fosters a broad perspective on life and has the potential to create
radically new forms of life. In the final analysis, the nature of life will be settled
by whatever provides the best explanation of the rich range of natural
phenomena that seem to characterize living systems. Better understanding of
how to explain these phenomena will also help resolve a cluster of puzzles about
life. These puzzles include whether life admits of degrees, how the notion of life
applies at different levels in the biological hierarchy, whether life is essentially
connected with mental capacities, and the relationship between the material
embodiment of life and the dynamical processes in those materials.

Strong Artificial Life

Artificial life naturally raises the question whether artificial constructions could
ever literally be alive. Agreement about the nature of life would make this
question easier to answer. For example, if the defining property of living systems
were the process of sustaining a complex internal organization through a
metabolism, then the issue would be whether an artificially created system could
literally exhibit this property (see Boden 1999 for discussion). But the debate over
creating real but artificial life currently proceeds in the absence of agreement
about what life is.

It is important to distinguish two questions about creating artificial life.
The first concerns whether it is possible to create a physical device such as a
robot that is literally alive. Aside from controversy about what life is, the
challenge here is less philosophical than scientific. It concerns our ability to
synthesize the appropriate materials and processes. The philosophically
controversial question is whether the processes or entities inside a computer that
is running an artificial life model could ever literally be alive. This is the issue of
whether so-called “strong” artificial life is possible. Strong ALife is contrasted
with “weak” ALife, the uncontroversial thesis that computer models are useful
for understanding living systems.

The strong ALife question is sometimes put in terms of computer
simulations: can a computer simulation of a living system ever literally be alive?
This formulation prompts the response (e.g., Pattee 1989, Harnad 1994) that it is a
simple category mistake to confuse a simulation of something with a realization of
it. A flight simulation for an airplane, no matter how detailed and realistic, does
not really fly. A simulation of a hurricane does not create real rain driven by real



gale-force winds. Similarly, a computer simulation of a living system produces
merely a symbolic representation of the living system. The intrinsic ontological
status of this symbolic representation is nothing more than certain electronic
states inside the computer (e.g., patterns of high and low voltages), and this
constellation of electronic states is no more alive than is a series of English
sentences describing an organism. It seems alive only when it is given an
appropriate interpretation. This interpretation might be fostered if the
description dynamically reflects how the living system changes over time and if
the simulation produces a vivid life-like visualization, but it is still only an
interpretation.

A number of considerations can blunt this charge of category mistake. It is
important to recognize that an artificial life model that is actually running on a
computer consists of a real physical process occurring in a real physical medium
consuming real physical resources. The software specifying the model might be a
static abstract entity with the ontological nature of a Platonic universal, but an
actual simulation of the model has the ontological status of any physical process.
Furthermore, as emphasized earlier, artificial life models are often intended not
as simulations or models of some real-world living system but as novel examples
of living systems. Conway’s Game of Life (Berlekamp et al. 1982), for example, is
not a simulation or model of any real biochemical system. Rather, it is simple
system that exhibits spontaneous macroscopic self-organization. Similarly, Ray’s
Tierra (Ray 1992) is not a simulation or model of the ecology and evolution of
some real biological system. Instead, it is an instance of ecological and
evolutionary dynamics in a digital domain. So, when the Game of Life and Tierra
are actually running in computers, they are new physical instances of self-
organization and evolution. Processes like self-organization and evolution are
multiply realizable and can be embodied in a wide variety of different media,
including the physical media of suitably programmed computers. So, to the
extent that the essential properties of living systems involve processes like self-
organization and evolution, suitably programmed computers will actually be
novel realizations of life. Models that merely represent some phenomenon differ
from models that actually generate it. For example, a two-dimensional model of
a branching process with random pruning can be viewed as a description of the
evolution of more or less complex insects, if one dimension is taken to represent
time and the other is taken to represent complexity. But exactly the same
branching process can equally be viewed as a description of the evolution of
more or less tall humans. It can even be viewed as a description of various non-
temporal and non-biological processes, such as the pattern of tributaries in a
geography. In itself, the model does not intrinsically involve any of these things.
By contrast, a glider in Conway’s Game of Life is not an electronic pattern that is
merely interpretable as a self-sustaining dynamic collective. It really is an
electronic self-sustaining collective, whether or not anyone notices it and regards
it as such. Likewise, the self-replicating machine-language programs in Ray’s
Tierra genuinely evolve by natural selection and genuinely engage in
host/parasite relations. The nature of ALife’s key problem of modeling the open-
ended evolution of adaptive complexity can be appreciated in this light. It is easy
to make a model that can be interpreted as exhibiting this phenomenon; the
challenge is to make a model that actually generates it.



The Turing test in artificial intelligence was an attempt to settle whether
computing could be indistinguishable from thinking in the absence of any
agreement about the nature of thinking itself. Thus the proposal to settle the
strong ALife debate with a “Turing test” for life often arises in artificial life. Some
(e.g., Sober 1992) warn that the Turing test in AI is an insufficient test for
intelligence because it is possible in principle for an unthinking device to pass the
test. A typical example of such a hypothetical device is a machine that stores an
appropriate output for all the different input that might be encountered. The
characteristic drawback of such devices is that, even to exhibit modest
capabilities, the number of pieces of information they must store is larger than
the number of elementary particles in the entire universe. Though possible in
principle, such a device is clearly impossible in practice. Artificial life’s
computational methodology demands models that actually produce the
phenomenon of interest. In this context, what is possible in principle but
impossible in practice is irrelevant. So the experience in ALife prompts one to
ignore unfeasible counterexamples to Turing tests. Harnad (1994) has advocated
ecological and evolutionary indistinguishability from biological life as a Turing
test for life. The motivation for this test for life is that it would be arbitrary to
deny life to anything that is indistinguishable ecologically and evolutionarily
from biological life. But this test is biased against life forms that are isolated from
the biosphere. Systems existing inside computers running artificial life models
might exhibit all the ecological and evolutionary richness found in the biosphere.
Yet they might not interact with biological life, so they might fail Harnad’s test
for life. Thus, Harnad’s test begs the question against some forms of artificial life.

The debate about strong artificial life is intertwined with philosophical
questions about functionalism and computation. A significant source of support
for strong ALife is the belief that life concerns form more than matter. Although
certain carbon-based macromolecules play a crucial role in the vital processes of
all known living entities, metabolization creates a continual flux of molecules
through living systems. Thus, life seems more like a kind of a process than a kind
of material entity. This implies that life could be realized in a variety of media,
perhaps including suitably programmed computer hardware. This motivation
for strong ALife prompts a functionalist and computationalist view of life,
analogous to contemporary functionalism and computationalism with respect to
mind. Sober (1992) points out that many essential properties of organisms
involve their interaction with the environment. Thus, the computational
character of the processes inside organisms would not alone support
functionalism and computationalism about life. But since many artificial life
models situate artificial organisms in an artificial environment, artificial life still
promotes functionalism and computationalism. Bedau (1997b) argues that
artificial life’s models generate macro-level dynamics with a suppleness that is
distinctive of adaptive intelligence and that cannot be captured by any fixed
algorithm. The models are implemented in a computer but adaptive processes
like natural selection continually change the micro-level rules that govern the
system. Thus, the macro-level processes that emerge are non-computational. This
perspective still supports functionalism with respect to life, but a form of
functionalism divorced from computationalism.

Artificial life models generate behavior that is characteristic of living
systems, so the practice of artificial life will continually raise the question



whether a computer model of life could literally be alive. By continually
challenging the boundaries between life and non-life, artificial life will also spur
novel perspectives on the issue. The debate about strong ALife will also enliven
and inform many related issues in the philosophy of mind and artificial
intelligence, including functionalism, computationalism, intelligence,
intentionality, and representationalism.

Philosophical Methodology

Artificial life also has implications for the methodology of philosophy.
Philosophy and artificial life are natural partners. Both seek to understand
phenomena at a level of generality that is sufficiently deep to ignore
contingencies and reveal essential natures. In addition, artificial life’s
computational methodology is a direct and natural extension of philosophy’s
traditional methodology of a priori thought experiments. In the attempt to
capture the simple essence of vital processes, artificial life models abstract away
as many details of natural living as possible. These models are for exploring the
consequences of certain simple ideas or premises. They are “thought
experiments” explored with the help of a computer. Like the traditional armchair
thought experiments employed in philosophy, artificial life simulations attempt
to answer “What if X?” questions. Artificial life’s thought experiments are
distinctive in that they can be explored only by computer simulation; armchair
analysis is simply inconclusive. Synthesizing thought experiments on a computer
can bring a new clarity and constructive evidence to bear in philosophy (see
chapter 26).
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Glossary

Autocatalysis: self-catalysis, catalysis of a chemical reaction by one of the
products of the reaction.



Boolean network: a network comprised of some number of binary variables. The
state of each variable at each step in discrete time is governed by some logical
switching or “Boolean” function applied to the states of some specific set of
other variables in the network.

Catalysis: a modification (usually an increase) in the rate of a chemical reaction
induced by a substance (e.g., a catalyst like an enzyme) that alters the speed
of, or makes possible, a biochemical or chemical reaction while itself
remaining unchanged at the end of the reaction.

Cellular automaton: A regular spatial lattice of “cells,” each of which can be in
any one of a finite number of states. The states of all the cells in the lattice are
updated simultaneously and the state of the entire lattice advances in discrete
time steps. The state of each cell in the lattice is updated according to a local
rule that may depend on the state of the cell and its neighbours at the
previous time step. Each cell in a cellular automaton could be considered to
be a finite state machine which takes its neighbours' states as input and
outputs its own state. The best known example is John Conway's Game of
Life.

Eukaryote: one of the two major groupings into which all organisms are divided
(the other is prokaryote). Included are all organisms, except bacteria and
cyanobacteria. The cells of eukaryotes possess a clearly defined nucleus,
bounded by a membrane, within which DNA is formed into distinct
chromosomes. Eukaryotic cells also contain mitochondria, chloroplasts, and
other structures (organelles) that, together with a defined nucleus, are lacking
in the cells of prokaryotes.

Homeostasis: The ability or tendency of an organism or a cell to maintain
internal equilibrium by adjusting its physiological processes.

Prion: acronym for “proteinaceous infectious particle”, it is a infectious micro-
organism a hundred times smaller than a virus. It is composed solely of
protein, without any detectable amount of nucleic acid (genetic material).
How it can operate without nucleic acid is not yet known.

Prokaryote: one of the two major groupings into which all organisms are divided
(the other is eukaryote). Prokaryotes are organisms (bacteria and
cyanobacteria, i.e.,  blue-green algae) that do not have a distinct nucleus.

Turing machine: an abstract automaton that can in be any one of a number of
states and that is capable of moving back and forth on an infinitely long
discrete tape of instructions (customarily zeros and ones), reading and
writing instructions on each segment of tape as it moves. A Turing machine’s
state at a given time is a finite function of both the machines current state and
the information on the currently scanned section of tape. A universal Turing
machine is a Turing machine capable of executing any algorithm.

Virus: any of a large group of parasitic, acellular entities that are regarded either
as the simplest micro-organisms or as extremely complex molecules. A virus
typically consists of a protein coat surrounding a core of DNA or RNA. It is
capable of growth and reproduction only if it can invade a living cell to use
the cell's system to replicate itself. In the process, it may disrupt or alter the



host cell's own DNA and hence cause various common diseases in other
organisms.
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