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Abstract. We study a new variant of the dissipative particle dynamics (DPD) 

model that includes the possibility of dynamically forming and breaking strong 

bonds. The emergent reaction kinetics may then interact with self-assembly 

processes. We observe that self-assembled amphiphilic aggregations such as 

micelles have a catalytic effect on chemical reaction networks, changing both 

equilibrium concentrations and reaction frequencies. These simulation results 

are in accordance with experimental results on the so-called “concentration ef-

fect”. 
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1   Introduction 

We seek to understand the properties of networks of chemical reactions that implicitly 

interact with self-assembled amphiphilic structures1. Chemical reaction networks as 

well as self-assembled amphiphilic structures2 are complex systems. Real complex 

systems in nature often involve the integration of sub-groups of complex systems. The 

system we study here is one such example. It couples chemical reaction networks 

with self-assembling amphiphilic structures. 
There is ample experimental evidence that such coupled networks exhibit interest-

ing behavior, in particular, that self-assembled amphiphilic structures affect certain 

chemical reactions. Micelles and other self-assembled structures are known to pro-

foundly increase the rates of certain reactions [11]. The core mechanism is simply that 

the supramolecular structures increase the local concentration of the reagents, just as 

                                                             
1 An extended version of this article is available at this web page: 

   http://www.ecltech.org/bmcmyp/Data/ECLT/Public/publications.html 
2 Various parameters such as temperature, pH, and critical threshold concentration influence the 

type (or “phase”) of structures that self-assemble from the amphiphiles. In addition to famil-

iar amphiphiles such as fatty acids and phospholipids, other materials self-assemble includ-

ing biopolymers like oligopeptides [12]. 



 2 

some catalysts do, and thus accelerate reaction rates. For example, hydrophobic rea-

gents will spontaneously concentrate inside micelles, leading to reaction rate accelera-

tion. Sometimes called “micellar catalysis” [24, 27], this catalytic concentration effect 

has been observed in a variety of chemical systems that involve micelles and reverse 

micelles [28, 35]. For example, the presence of micelles increases the rate of RNA 

self-cleavage reactions 100-fold [27]. Many kinds of reactions are catalyzed by mi-

celles, such as redox [21] and hydrolysis reactions [7]. Micellar catalysis is very gen-

eral and happens with many kinds of self-assembling materials besides amphiphiles. 

Examples include polymerized and polymeric amphiphiles [24] and dendrimers [7, 

23]. Dendrimers are spherical macromolecules that are somewhat similar to micelles, 

except that while micelles are rather fluid aggregations composed of many am-

phiphilic molecules held together by the hydrophobic effect, dendrimers are single 

static structures tightly held together by covalent bonds.  

Our goal here is to model and study this kind of catalysis by self-assembled struc-

tures in emergent reaction networks, where the dynamics of the network are not ex-

plicitly specified in the rules governing the system. Historically, biochemical reaction 

networks have been modeled using several approaches. Early approaches used net-

works whose nodes represented chemical species, and lines between nodes repre-

sented reactions. Autocatalytic reaction networks also included lines from catalyst 

nodes to reaction lines, to represent catalyzed reactions [8, 16]. Other reaction net-

works have been modeled in immunology: idiotypic networks [9] and more recently, 

cytokine networks [18]. The chemistry in many of the early network models was ab-

stract. The models intentionally sought to escape from the details of real chemical in-

teractions, for two reasons: capturing the details of real chemical interactions is diffi-

cult and immediately begs the question of what level of detail is to be captured, and 

the results sought from the model were expected (hoped) to be relatively independent 

from details of the individual chemical reactions; for large networks, the bulk proper-

ties of the network (connectivity, scaling, etc.) were hoped to be independent of the 

details. 

More recently, the experimental understanding of reaction networks has been in-

creasing substantially, and there has been an increased awareness of the need to 

model details of real chemical reactions in order to define and understand biochemical 

functionality in a given context, e.g., for a cell [29] and for reaction networks with re-

action properties based on quantum mechanics [2, 3, 4]. Simultaneously, there has 

been a growing awareness that chemical reactions cannot by themselves provide a 

complete picture of biochemical functionality. Structural properties of amphiphilic as-

semblies must be added to the purely chemical picture.  A very rich example is that of 

lipid structures. These structures are particularly interesting because they have com-

plex phase diagrams, with phase transitions between several different phases, e.g., 

lipid solution, micelles, and vesicles, because the transitions between these phases 

may be catalyzed by the presence of other biopolymers, and because some of the 

phases may themselves have catalytic properties, e.g., for template-directed replica-

tion [19, 20, 26]. Finely tuned chemical control of phase transitions in biochemical 

gels (including more complex gels than simple lipid structures) has been proposed as 

a general framework for cellular function [25]. 

In this paper we study a model of interacting microscopic particles that combines 

relatively simple chemical reaction properties with properties deriving from self-



 3 

assembly processes that can strongly affect the chemical reactions. Interactions be-

tween the particles determine both the chemistry and the self-assembly. The macro-

scopic result of a model simulation is the emergence of a network of chemical reac-

tions that may interact with the self-assembled structures. 

2   The model 

Our model of chemical reaction systems is based on the well-studied dissipative 

particle dynamics (DPD) framework [13, 14, 22, 30, 31, 32]. In DPD all the elements 

move in a two- or three-dimensional continuous toroidal space, according to the influ-

ences of four pairwise forces, 
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“weak” force between pairs of particles, a dissipative force between nearby particles, 

a spring-like “strong” bond force if two particles are bonded and a random force. 

Since strong bonds never form or break in the traditional DPD framework, that 

framework is unable to represent reaction processes that involve forming and break-

ing strong bonds. We introduced dbDPD, an augmented DPD framework that in-

cludes the possibility of making particles react with each other, dynamically forming 

or breaking strong bonds (see [1, 6], to which we refer for a thorough explanation of 

the model and all its parameters). Relevant parameters occur in the expressions for the 
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ther, we have l, the relaxed strong bond length (set to 0.01), k, that governs the 

strength of all strong bonds, represented as Hookean springs 
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number chosen from the interval (-1, 1). 

3   Emergent Chemical Reaction Networks 

Some of the networks in the literature are emergent [2, 16], some not. Reaction net-

works that arise as a result of our chemistry within dbDPD are highly emergent, in the 

sense that their equilibrium state is very hard to derive without explicit simulation. 
Given rules for forming and breaking bonds, together with the constraint of only 

two or less bonds allowed per particle, we have the basis for a network of linear po-

lymerization reactions. The architecture of the reaction network is determined by the 

constraints that are set on the process of strong bond formation. The reaction network 

complexity is controlled with the specification of the pairs of particle types that can 
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form strong bonds and of the maximum length N of the polymeric chains resulting 

from the strong bond formation process.  

The simple example we explore is a reaction network identified by the duple 

<{5,4}, 2>, namely having two reactive particle types labeled with integers 5 and 4 

that can only form chains of length N=2, resulting in the architecture shown in Fig. 1. 

 

 

Fig. 1. Architecture of the reaction network for the experiment of polymerization from mono-

mers to dimers. 

Each labeled node represents a chemical species that can undergo strong bonding 

reactions; each solid dot connecting edges from the chemical species represents one 

of the three possible reactions that can take place: 5 + 4 ! 54, 5 + 5 ! 55, 4 + 4 ! 

44. Note that bond forming and bond breaking radii do not influence a chemical reac-

tion network’s architecture but play a main role in determining the rate of interaction 

of reagents in the process of strong bond formation. In our simulations the values of 
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b , were the same for all reagents. Thus we can say that all rea-

gents share the same intrinsic reaction rate. 

3.1   Results in a simple network 

The first experiment we report concerns a simple network that contains five particle 

types: water (type 1), amphiphilic heads (type 2), amphiphilic tails (type 3), and two 

reagents (types 4 and 5). Because it is so simple, this network clearly illustrates the 

main kinds of interactions between self-assembled structures and emergent reaction 

networks. The inter-particle interactions are governed by the 
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in Table 1. 

Table 1. 
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IJ( )  values for particle interactions in simple network. The particle types 4 and 5 

are the monomers that polymerize in the reaction network. 
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IJ( )  water head tail 4 5 

water (1,1)     

head (1,1) (150,1)    

tail (4,1) (15,5) (5,1)   

4 (1,1) (1,5) (1,1) (1,1)  

5 (1,1) (1,5) (1,1) (1,1) (1,1) 
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Note that “neutral” interactions, e.g., between water and water, are taken to be very 

weak repulsive interactions, with 

! 

"
IJ
,#

IJ( )  = (1,1). 

The self-assembly process of amphiphilic dimers into micelles can require several 

time steps in DPD, depending on several factors, such as the temperature of the sys-

tem and the strength of the weak forces. In our experiments, we wanted to simulate a 

real chemical system in which lipophilic reagents are placed into an aqueous solution 

containing micelles that have already formed. In control cases, the amphiphilic dimers 

were replaced by water and particle initial positions were chosen randomly. All the 

other DPD parameters were kept the same.  

The experiments that we ran were set within a 30x30 toroidal space with 7200 par-

ticles, composed of 2/7 reagents, 2/7 amphiphilic dimers and 3/7 water. Simulations 

were run without allowing the reagents to form bonds, until the amphiphiles aggre-

gated into micelles and the distribution of reagents reached the equilibrium, according 

to the weak forces that reagents feel towards amphiphiles. Then the particle positions 

were saved and the simulation was restarted, loading those positions as initial condi-

tions. 

One straightforward way to compare the behavior of the system with micelles to a 

control without micelles is by analyzing the average concentrations of the species 

identified by the network’s nodes at equilibrium. As we can see from Fig. 2 and Table 

2, in the control case concentrations fall into three clearly distinguishable classes. The 

dominant species are monomers, followed by the only non-palindromic dimer and 

then by the two palindromic dimers, produced by a self-reaction, which is a reaction 

between two monomers of the same kind. The experimental case is, in contrast, 

dominated by the non-palindromic dimer, followed by the two palindromic ones and 

then by monomers. Note that palindromic dimers are half as concentrated as non-

palindromic dimers in both systems. 

 

 

Fig. 2. Equilibrium concentration of different chemical species for a representative dbDPD run 

of control (left) and experiment (right). The error bars are smaller than the size of the symbols. 

Note that the triangle has the highest concentration for the experiment, shifted significantly 

from the control. 
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Table 2.  Equilibrium concentration for each chemical species as shown in Fig. 2. 

Chemical species Equilibrium concentration Length 

                                                                   CONTROL 

4, 5 ~ 404 Monomers 

54 ~ 300 Non-palindromic dimer 

44, 55 ~ 162 Palindromic dimers 

 EXPERIMENT  

54 ~ 491 Non-palindromic dimer 

44, 55 ~ 230 Palindromic dimers 

5, 4 ~ 79 Monomers 

Table 3. Reaction frequency for the same run as in Fig. 2 and Table 2. 

Chemical reactions Reaction frequency Observations 

CONTROL 

5 + 4 ! 54 ~ 103 Monomer + monomer !  

non-palindromic dimer 

5 + 5 ! 55 

4 + 4 !44 

 

~ 52 

Monomer + monomer ! 

palindromic dimer 

EXPERIMENT 

5 + 4 ! 54 ~ 88 Monomer + monomer !  

non-palindromic dimer 

5 + 5 ! 55 

4 + 4 !44 

 

~ 42 

Monomer + monomer ! 

palindromic dimer 

 
We may also compare the reaction dynamics of the two systems, in particular, how 

frequently reactions happen. Table 3 displays how often each possible reaction hap-

pens on average over 50 time steps once the dynamics have reached the equilibrium. 

In both the control and the experimental case reaction frequencies fall into two 

classes, one containing the self-reactions and the other one the non-self-reactions.  

Note that in both cases, the reactions that involve palindromic dimers are half as fre-

quent as those that involve non-palindromic ones. The experimental case shows that 

the frequency of each reaction is lower than its corresponding one in the control. We 

now discuss two different observed effects in detail. 

Concentration effect: In the control case the only force that can keep the reagents 

close to each other is due to the (possible) strong covalent bonds formed between two 

of them. As explained in [1, 6], if two reagents come within a distance smaller than 

their bond forming radius, then they form a strong bond that keeps on existing as long 

as the reagents’ distance is smaller than their bond breaking radius. The reagents are 

free to float around until they form a strong bond. At this point, the bond strength will 

determine how long the bonded monomers will stay close to each other enough to 

keep their bond intact. The weaker the bond, the more likely it will be for it to break 

in the following time steps, leaving the two resulting monomers free floating again. 

Apart from the bond strength, nothing affects the survival probability of a dimer. 
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In the experimental case, clusters of reagents form because of the weak forces that 

attract them to micelles. Therefore when the covalent bonds are broken, the mono-

mers don’t start to freely diffuse again, but continue to be entrapped in the same clus-

ter, then it is very likely that they are involved in new bonding reactions, possibly 

with other free monomers in the same cluster.  

The probability of existence of a bond depends on several factors. One main factor 

is the reagents’ density (number of reagents over space area). The higher the density, 

the smaller the average distance between reagents. This probability affects equilib-

rium concentrations. If bonds are highly likely, then longer polymers are more preva-

lent. If bonds are unlikely, then monomers are more prevalent. For the reasons we ex-

plained above, the reagent density is locally increased by micelles, and that explains 

why dimers are more concentrated than monomers. By spatially concentrating rea-

gents the micelles act as catalysts. We could also have obtained an analogous result in 

the control case, by increasing the bond strength.  

The concentration effect caused by micelles can be observed from the change in 

reaction frequencies. Due to the concentration effect, bonded dimers survive for a 

longer time than when there is no concentration effect, reducing the frequency of the 

bond breaking reactions. This results in a low number of free reactive monomers, 

which decreases the frequency of the forward reactions as well.  

Palindrome effect.  We noticed that the 55 and 44 dimers’ concentration is around 

half of that of the 54 dimer at equilibrium (Fig. 2, Table 2). We also noticed that the 

frequency of each reaction involving 55’s or 44’s is half as much of that of the only 

reaction that involves 54’s. The reason is that dimers 54 and 45 have been identified 

as the same dimer.  For all possible pairwise combinations of monomers of type 4 and 

type 5, if 4’s are as many as 5’s, there are equal numbers of 44, 45, 54, and 55, so if 

45 and 54 are considered identical, their number is double that of 44 and 55. More 

generally, one may consider all polymer types of a given length, and see by the same 

argument that those that are non-palindromic will be doubled by identifying polymers 

read in one direction with those that are the same when read in the opposite direction. 

While the concentration effect concerns the difference between control and ex-

perimental equilibria, the palindrome effect concerns the difference between palin-

dromic and non-palindromic N-mers in either control or experimental situations. The 

palindrome effect is actually seen in both the control and the experimental case. 

3.2   Results for a larger network 

We observed qualitatively the same kinds of effects in a wide variety of more 

complex emergent reaction networks, with higher maximum polymer length and more 

kinds of reagents.  

Cascade effect: The more complex networks illustrated a third effect. Micelles in-

crease the frequency of the reactions involving higher length polymers, as they tend to 

increase the concentration of their required ingredients compared to the control case. 

On the way to equilibrium, however, we see that first monomer concentration de-

creases as dimer concentration rises, then after reaching a maximum, dimer concen-

tration decreases as trimer concentration increases, and so on. This effect moving 

through successive length polymers we term the “cascade effect”. 
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4   Discussion and Conclusion 

We have studied a new variant of dissipative particle dynamics (DPD) with dynamic 

bond forming and breaking, which we termed “dbDPD”. This yields a microscopic 

mechanism for chemical reactions, from which emerges macroscopic chemical kinet-

ics. The reagents may be represented as nodes on a graph, the reaction network, which 

also emerges from the microscopic chemical reaction mechanism. The emergent reac-

tion network and reaction kinetics have many of the hallmarks of real reaction net-

works, e.g., the existence of many side reactions. Here, we have studied a particular 

class of reactions, polymerization between two monomer types. 

DPD is well known as a modeling framework that is suited for studying self-

assembled structures from amphiphilic molecules. Our addition of chemical reactions 

in dbDPD enables the additional study of the interplay between chemical reactions 

and self-assembly processes. 

We report a clear identification of an experimentally known type of micellar ca-

talysis: the concentration effect. Essentially, the effect comes about because lipophilic 

reagents may aggregate within or near the micelles, effectively increasing their local 

concentration and changing the equilibrium concentrations of resulting reaction prod-

ucts. In particular, long polymers that have very low equilibrium concentration in the 

absence of micelles may have very high equilibrium concentration (relative to all 

other reagents) in the presence of micelles. 

In addition to the concentration effect, we identified two other effects that should 

be experimentally observable: (i) the palindrome effect, the doubling of the concen-

tration of non-palindromic polymers because of the identification of polymers read in 

one directions with those that are the same when read in the opposite direction, and 

(ii) the cascade effect, seen when starting with high concentration of monomers: the 

concentration of monomers goes down as the concentration of dimers increases, then 

the concentration of dimers reaches a maximum and then decreases as the concentra-

tion of trimers increases, and so on. 

Future directions for research based on dbDPD include refinement of the micro-

scopic chemical reaction mechanisms to make them more realistic for particular target 

experiments. We also believe that introduction of variations into reaction products 

may enable the system to display evolvability. 
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