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Artificial life attempts to understand the essential gene-
ral properties of living systems by synthesizing life-like
behavior in software, hardware and biochemicals. As
many of the essential abstract properties of living sys-
tems (e.g. autonomous adaptive and intelligent behav-
ior) are also studied by cognitive science, artificial life
and cognitive science have an essential overlap. This
review highlights the state of the art in artificial life
with respect to dynamical hierarchies, molecular self-
organization, evolutionary robotics, the evolution of
complexity and language, and other practical appli-
cations. It also speculates about future connections
between artificial life and cognitive science.

Artificial life (also known as ‘ALife’) is an interdisciplinary
study of life and life-like processes that uses a synthetic
methodology. Three broad and intertwining branches of
artificial life correspond to three different synthetic
methods. ‘Soft’ artificial life creates simulations or other
purely digital constructions that exhibit life-like behavior,
‘hard’ artificial life produces hardware implementations of
life-like systems, and ‘wet’ artificial life synthesizes living
systems out of biochemical substances. Cognitive science
and artificial life share some intellectual roots, and their
subjects andmethodologies are related. Now that artificial
life has matured over the past decade or so, it is appro-
priate to review its achievements and speculate about its
future connections with cognitive science.

The origins and methodology of artificial life
The phrase ‘artificial life’ was coined by Christopher
Langton, who envisioned a study of life as it could be in any
possible setting [2]. Artificial life owes its two deepest
intellectual roots to John von Neumann and Norbert
Wiener. Von Neumann [3] designed the first artificial-life
model (without referring to it as such) when he created his
famous self-reproducing, computation-universal cellular
automata (see Figure 1). He tried to understand the
fundamental properties of living systems, especially self-
reproduction and the evolution of complex adaptive
structures, by constructing simple formal systems that
exhibited those properties. At about the same time,Wiener
[4] started applying information theory and the analysis
of self-regulatory processes (homeostasis) to the study of
living systems. The constructive and abstractmethodology
of cellular automata still typifies much of artificial life, as

does the abstract and material-independent methodology
of information theory.

Artificial life has also been influenced by developments
in traditional disciplines. In addition to a wealth of infor-
mation about the life forms found on Earth, some models
originally devised for specific biological phenomenon have
been adopted by artificial life. Physics and mathematics,
especially statistical mechanics and dynamical systems,
have contributed the method of constructing simple model
systems that have broad generality and permit quanti-
tative analysis. In addition, the use of cellular automata
as exemplars of complex systems [5] led directly to

Figure 1. Cellular automata. A cellular automaton is a regular spatial lattice of
‘cells’, each of which can be in one of a finite number of states. (The lattice typically
has 1, 2, or 3 spatial dimensions.) The state of each cell in the lattice is updated
simultaneously in discrete time steps. Each cell is a finite-state machine that out-
puts the next state of the cell, given as input the states of the cells within some
finite, local neighborhood. Typically all cells in the lattice are governed by the
same update rule, which is usually deterministic. (a)–(d) show the change over
time of four different one-dimensional cellular automata. Each cellular automaton
is a strip of 300 cells, each of which is in one of two states (black or white). The
initial state of each cell, which is chosen randomly, is at the top of each panel, and
each subsequent state of that cell is immediately below the previous state. Thus,
each panel is a space–time diagram showing how the cells change state over time
given a particular random initial condition. The qualitative behavior exhibited in
each case is typical for that cellular automaton; changing the initial condition typic-
ally does not change the type of global behavior that emerges. Note though that
different simple cellular rules give rise to qualitatively different kinds of global
behavior, some of which are quite complex. The cellular automaton in (d) is
thought to be computationally universal, that is, capable of precisely modeling
any computer algorithm whatsoever.
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contemporary artificial life. Complex systems are com-
posed of many elements simultaneously interacting with
each other. Those in which the rules governing the ele-
ments are reshaped over time by some process of adap-
tation or learning are complex adaptive systems [6,7], and
these are the main focus of artificial life.

Artificial life also has roots in computer science,
especially artificial intelligence (AI) andmachine learning.
Most notable here are John Holland’s pioneering investi-
gations of genetic algorithms and classifier systems [6,8]
(see Box 1). The subjects of AI and artificial life overlap,
as living and flourishing in a changing and uncertain
environment seem to require at least a rudimentary form
of intelligence. Their methodology is also similar: both
study natural phenomena by simulating and synthesiz-
ing them. Nevertheless, there is an important difference
between the modeling strategies of traditional symbolic AI
and artificial life. Most traditional AI models are top-
down-specified serial systems involving a complicated,
centralized controller that makes decisions based on
access to all aspects of global state. The controller’s deci-
sions have the potential to affect directly any aspect of the
whole system. On the other hand, many natural living
systems exhibiting complex autonomous behavior are
parallel, distributed networks of relatively simple, low-
level ‘agents’ that simultaneously interact with each other.
Each agent’s decisions are based on information about, and
directly affect, only its own local environment. ALife’s
models characteristically follow this example from nature.
The models themselves are bottom-up-specified, parallel
systems of simple agents interacting locally. They are
repeatedly iterated and the resulting global behavior is
observed. Such lower-level models are sometimes said to
be ‘agent-based’ or ‘individual-based.’ The whole system’s
behavior is represented only indirectly, and arises out of
the interactions of directly represented parts (‘agents’ or
‘individuals’) with each other and with their physical and
social environment. This decentralized architecture shares
important similarities with some newer trends in AI,

including connectionism [9], multi-agent AI [10], and
evolutionary computation [6,11].

A sample of the state of the art
Life exhibits complex adaptive behavior at many different
levels of analysis: metabolic and genomic networks, single
cells, whole organisms, social groups, evolving ecologies,
and so forth. This diversity of levels gives artificial life
a broad intellectual scope (see Box 2). The following
highlights illustrate ascending levels in the hierarchy of
living systems.

Dynamical hierarchies
Each level in a dynamical hierarchy consists of the inter-
action of entities with a distinctive set of autonomous
functionalities, and the entities at higher levels are com-
posed of entities at lower levels (for example, think of
organs, which are made up of tissues, which are made up
of cells, which are made up of organelles, which are made
up of molecules, and so on). One of the fundamental
open problems in artificial life is to explain how robust,
multiple-level dynamical hierarchies emerge solely from
the interactions of elements at the lowest-level. This is
closely analogous to the problem in cognitive science of
explaining how cognitive capacities ultimately emerge from
the interactions of non-cognitive elements like neurons.

Box 1. Genetic algorithm

The genetic algorithm is a machine-learning technique loosely
modeled on biological evolution; it views learning as a matter of
competition among candidate problem solutions. Potential solu-
tions are encoded in an artificial chromosome, and an initial popu-
lation of candidate solutions is created randomly. The quality or
‘fitness’ of each solution is calculated by application of a ‘fitness
function’. For example, if the problem is to find the shortest route
between two cities and a candidate solution is a specific itinerary,
then the fitness function might be the reciprocal of the sum of the
distances of each segment in the itinerary, so shorter-distance routes
have higher fitness. In effect, the fitness function is the ‘environment’
to which the population adapts. A candidate solution’s ‘genotype’ is
its chromosome, and its ‘phenotype’ is its fitness. By analogy with
natural selection, lower fitness candidates are then replaced in the
population with new solutions modeled on higher fitness candi-
dates.Newcandidatesaregeneratedbymodifyingearlier candidates
with ‘mutations’ that randomly change chromosomal elements and
‘crossover’ events that combine pieces of two chromosomes. After
reproducing variants of the fittest candidates for many generations,
the population contains better and better solutions.

Box 2. Grand challenges in artificial life

A good way to understand an interdisciplinary science is through its
central aims. The challenges of artificial life fall into three broad
categories: the origin of life, life’s evolutionary potential, and life’s
connection tomindand culture [1]. (Some areas inwhich artificial life
plays a significant role, such as robotics and art, do not appear on the
list, which is not meant to be comprehensive.)

How does life arise from the non-living?
(1) Generate a molecular proto-organism in vitro.
(2) Achieve the transition to life in an artificial chemistry in silico.
(3) Determine whether fundamentally novel living organizations

can arise from inanimate matter.
(4) Simulate a unicellular organism over its entire lifecycle.
(5) Explain how rules and symbols are generated from physical

dynamics in living systems.

What are the potentials and limits of living systems?
(6) Determine what is inevitable in the open-ended evolution of

life.
(7) Determine minimal conditions for evolutionary transitions

from specific to generic response systems.
(8) Create a formal framework for synthesizing dynamical hier-

archies at all scales.
(9) Determine the predictability of evolutionary manipulations of

organisms and ecosystems.
(10) Develop a theory of information processing, information flow,

and information generation for evolving systems.

How is life related to mind, machines, and culture?
(11) Demonstrate the emergence of intelligence and mind in an

artificial living system.
(12) Evaluate the influence of machines on the next major

evolutionary transition of life.
(13) Provide a quantitative model of the interplay between cultural

and biological evolution.
(14) Establish ethical principles for artificial life.
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John Conway’s famous cellular automaton known as
the ‘Game of Life’ produces many levels of emergent
organization, but it is not robust; changing the state of
even one micro-level element often destroys the whole
hierarchical organization [12]. Living dynamical hier-
archies, by contrast, are quite robust. Significant progress
on understanding robust dynamical hierarchies would
come from a computer model in which the explicit primi-
tive operations govern objects at the lowest level, second-
order objects emerge out of the interactions of those
primitive objects, third-order objects emerge out of the
interactions of the second-order objects, and so on. One
step in this direction was taken by Fontana and Buss [13].
Their model first produced different kinds of second-order,
self-organizing structures; then, by changing the model’s
boundary conditions and pooling those second-order struc-
tures, a new third-order structure was produced.

More recently, Rasmussen and colleagues [14] showed
how to create wholly emergent third-order structures
(i.e. without external manipulations by the experimenter)
by creating a realistic simulation of the formation of
micelles out of monomer molecules in a three-dimensional
space. (Monomers are molecules that can combine with
others to form polymers, and micelles are aggregations of
many polymers.) Their model was the first to exhibit two
levels of fully emergent phenomena – that is, one in which
interactions among the primitive elements give rise to
higher-level emergent entities with emergent properties,
such that interactions among those emergent entities give
rise to yet higher-level emergent entities with their own
emergent properties (Figure 2).

Molecular self-organization
Many cognitive phenomena apparently involve spontane-
ous self-organization, and self-organization is also a cen-
tral focus in artificial life. This is covered in this review
at several levels (e.g. artificial cells, multicellularity, and
swarm intelligence), and here we are concerned with self-
organization at the molecular level. Kauffman and col-
leagues showed that many features of metabolic and
genetic networks that are often thought to be adaptations
can instead be viewed largely as the result of spontaneous
self-organization – or whatKauffman terms ‘order for free’
[15]. Kauffman makes bold claims about order for free
because the models he studies, such as random Boolean
networks (see Box 3), are abstract enough to cover a great
many real systems. It turns out that the number of vari-
ables in the network, the number of connections between
the variables, and the character of the Boolean functions
determine many biologically crucial properties of these
networks. Biologically realistic Boolean networks show
promise for explaining several empirically observed fea-
tures of biological systems, such as how the number of
different cell types and cell-replication times vary as a
function of the number of genes per cell [15].

Another important strand of research in this area con-
cerns the self-organization of self-replicating structures
(see below). Models of systems such as cellular automata
have shown that the emergence of stable self-replicating
structures built out of cooperative molecules succumbs
to parasitic invasion unless appropriate membranes or

compartments self-organize [16]. Recently, it has been
shown that independent replicators can self-organize into
cooperative molecular systems in vitro [17], and the self-
assembly of two-dimensional compartments with flexible,
semipermeable, self-organizing membranes has also been
demonstrated in computer simulations using reconfigur-
able hardware [18].

Self-replication
Self-replication is a crucial property of living systems
at many levels of analysis. Von Neumann’s original self-
reproducing cellular automaton [3] contained a universal
constructor, capable of constructing any cellular automaton

Box 3. Random Boolean networks

Random Boolean networks consist of a finite collection of binary
(ON, OFF) variables with randomly chosen input and output
connections. The state of each variable at each discrete step in
time is governed by some logical or Boolean function (AND,OR, etc.)
of the states of variables that provide input to it. The network is
started by randomly assigning states to each variable, and then the
connections and functions in the network determine the successive
state of each variable. Because the network is finite, it eventually
reaches a state it has previously encountered, and from then on the
network will repeat the same cycle of states. Different network states
can end up in the same state cycle, so a state cycle is called an
attractor.

Figure 2. Four stages in the self-assembly of third-order emergent structures, in a
three-dimensional lattice in which each side represents about 9 nanometers
(see [14]). The time between these snapshots corresponds to hundreds of micro-
seconds, or only tens of microseconds between (c) and (d). (a) shows first-order
hydrophilic (yellow) and hydrophobic (green) monomers that are organized into
amphiphillic polymers among water molecules (not shown). The second-order
polymers in (a) and (b) can be seen to have emergent properties, like elasticity,
that the first-order monomers cannot possess. (c) shows the emergence of
micelles – third-order structures generated from the dynamics of the second-order
polymers. The micelles have an inside and an outside and are permeable – proper-
ties that amphiphillic polymers cannot possess. (d) shows one of the micelles
dividing (right).
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configuration. Langton noted that natural self-reproducing
living systems were not universal constructors, and he
produced a vastly simpler self-replicating cellular auto-
maton that lacked a universal constructor [19]. Langton’s
configuration replicates because a description of it is both
copied into, and interpreted in the daughter configuration
in order to complete its construction. Langton’s result
sparked a series of simple self-replicating systems (reviewed
in [20,21]). Self-replication is not sufficient for life, of course,
andLangton-style self-replicating configurations seemmore
like growing crystals than living organisms because they
are unable to evolve. Sayama has overcome that limitation
by creating self-replicating cellular automata that evolve
and can become more complex [22], and Ikegami and
co-workers have recently demonstrated the emergence of
more realistic self-replicating structures [23].

Artificial cells
The holy grail of ‘wet’ artificial life is to create artificial
cells out of biochemicals. Such artificial cells would be
microscopic, autonomously self-organizing and self-repli-
cating physical entities that assemble themselves out of
non-living materials. Although artificial, they would repair
themselves and adapt in an open-ended fashion, so for all
intents and purposes they would be alive. The first artificial
cells will probably just move through a fluid and process
chemicals. To do even this flexibly and robustly, they must
solve the functions of self-maintenance, autonomous
control of chemical processing, autonomous control of
mobility, and self-replication.

Nobody has yet created an artificial cell, but research
is pursuing two approaches. Venter and Smith are using
the top-down strategy of artificially synthesizing and
modifying the genome of the organism with the smallest
genome, the bacterium Mycoplasma genitalium [24]. The
other approach is bottom-up, building more and more
complex physiochemical systems that increasingly incor-
porate life-like properties. Some bottom-up efforts are
strongly inspired by the RNA chemistry in existing cells
[25,26], whereas others pursue a simpler chemistry that
replaces RNAwith PNA (peptide nucleic acid, an analog of
DNA inwhich the backbone is a pseudopeptide rather than
a sugar) [27]. Laboratory experiments must be compared
with simulations of artificial cells, so there is overlap here
with systems biology, which aims to represent and simu-
late the details of real cells [28]. However, artificial life
has the broader aim of representing and synthesizing all
life-like systems, including those that do not yet exist.

Evolution of genetic code
The genetic code is a nearly universal feature of life on
earth, and yet it is difficult to understand how it could
evolve. A mutation at a given codon (i.e. three adjacent
bases on a strand of DNA or RNA that codes for a
particular amino acid) might be a selective advantage, of
course, but any change in the code would entail wholesale
changes at a vast number of codons. How could this be
anything but disastrous? Kaneko, Takagi and colleagues
[29] have proposed a solution to this problem by nume-
rically simulating a dynamic system that models an intra-
cellular metabolic-reaction network, interactions between

cells (via chemical diffusion), and mechanisms for cell
division (and death) and mutation. The system’s variables
are concentrations of metabolic chemicals, metabolic
enzymes, chemicals for genetic information, and enzymes
to translate genetic information into amino acids. The
genetic code determines how genetic information is
expressed phenotypically, that is, which amino acids are
produced, and evolution of the genetic code takes the form
of changes in the enzymes used in amino-acid synthesis.
Simulations using this model have shown that evolution
can create cells with distinct genetic codes.

Origin of multicellularity
The origin of multicellularity is one of the major tran-
sitions in the evolution of life, and apparently has evolved
independently many times. The developmental processes
that create these multicellular organizations share three
features. First, development starts with a homogeneous
cell (or set of cells) that are multipotent (i.e. they have the
ability to differentiate into many different types of special-
ized cells). Second, the developmental process has an
intrinsic temporal direction because the differentiated
cells that result are not multipotent. Third, the develop-
mental process is stable in the face of perturbations that
destroy clusters of cells.

Alan Turing’s pioneering work on cellular inhomo-
geneity over fifty years ago showed that an instability in
a homogeneous chemical system could generate the for-
mation of patterns by a process of chemical reaction and
diffusion [30]. Furusawa and Kaneko have now extended
Turing’s dynamic systems approach to explain the three
universal features of multicellular differentiation men-
tioned above [31]. They simulated a one-dimensional chain
of cells governed by randomly generated biochemical
reaction networks, and showed that differentiated cells
can grow more quickly than undifferentiated cells.

Evolutionary robotics
Muchwork at themulticellular level has occurred in ‘hard’
artificial life, which is concerned with various forms of
autonomous agents such as robots. This is artificial life’s
most direct overlap with cognitive science, as its aim is to
synthesize autonomous adaptive and intelligent behavior
in the real world. One of the tricks is to allow the physical
environment to generating the behavior as far as possible.
Brooks pioneered a biologically inspired approach to robotics
[32–34] (and see [35] for a recent textbook).

Traditional rational design for intelligent autonomous
agents is difficult, because it involves sophisticated inter-
connections among many complex components. The ALife
alternative is to follow nature and use an evolutionary
design method [36], employing a genetic algorithm [6,11]
(see Box 1). This method can be used to design many
aspects of robots, including control systems and sensors
[37–39]. In natural autonomous agents, the control sys-
tem is tightly coupled with morphology. Sims took some
steps towards capturing this interconnection when he
simultaneously co-evolved simulated creatures’ control-
lers, sensors, and morphology [40], and advances in hard-
ware and software have recently stimulated this line of
research [37,38,41]. Jordan Pollack and his students have
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demonstrated that co-evolution of controllers and mor-
phology can be constrained by off-the-shelf rapid proto-
typing technology, so that evolutionary design could be
automatically replicated in the real world [42,43].

Evolution of digital organisms
The first significant achievement of spontaneous evolution
in a digital medium was Ray’s Tierra [44]. Studying evolv-
ing systems in software is one of the most practical and
constructive ways to explore any evolutionary expla-
nations, such as those offered in evolutionary psychology.
Tierra consists of a population of digital ‘creatures’ that are
actually simple, self-replicating computer programs popu-
lating computer memory and consuming CPU time. A
Tierran genotype consists of a string of machine code, and
each Tierran creature is a token of a Tierran genotype.

A simulation starts when a single self-replicating pro-
gram, the ancestor, is placed in computer memory and left
to replicate (Figure 3). The ancestor and its descendants
repeatedly replicate until computer memory is teeming
with creatures that all share the same ancestral genotype,
so older creatures are continually removed from the sys-
tem to create space inmemory for new descendants. Errors
(mutations) sometimes occur, so the population of Tierra
creatures evolves by natural selection. If amutation allows
a creature to replicate faster, that genotype tends to spread
through the population.

Over time, the ecology of Tierran genotypes becomes
remarkably diverse. Quickly reproducing parasites that
exploit a host’s genetic code evolve, and the co-evolution
between hoses and parasites spurs the evolution of

parasite-resistance and new forms of parasitism. After
millions of CPU cycles of this co-evolutionary arms
race, Tierra often contains many kinds of creatures
exhibiting a variety of competitive and cooperative
ecological relationships.

Evolution of complexity
Life has exhibited a remarkable growth in complexity over
its evolutionary history. Simple prokaryotic one-celled life
developed into more complex eukaryotic one-celled life,
which led to multicellular life, then to large-bodied verte-
brate creatures with complex sensory processing capacities,
and ultimately to highly intelligent creatures that use
language and develop sophisticated technology – those
creatures at the central focus of cognitive science.

Although some forms of life remain evolutionary stable
for millions of years (e.g. coelacanths, sharks), the appa-
rently open-ended growth in complexity of the most com-
plex organisms is intriguing and enigmatic. Much effort in
artificial life is directed towards creating a system that
shows how this kind of open-ended evolutionary progress
is possible, even in principle. Digital evolution in Tierra
does not show this, because the complexity of individual
Tierran creatures typically decreases and significant
evolutionary change eventually peters out (Figure 3).
Ray has tried to address these limitations by making the
Tierra environments much larger and more heterogene-
ous, and by making the ancestral Tierran creatures signi-
ficantly more complex (in effect, giving them multiple cell
types). By allowing Tierran creatures to migrate from
machine to machine over the Internet, looking for unused
resources and for more favorable local niches, Ray has
found signs that they evolve new types of cells [45].
Furthermore, when Tierra is modified so that creatures
are rewarded for performing complex arithmetic opera-
tions on numbers they find in their environment, evolution
produces the expected increase in genetic complexity
[46,47]. However, as with the original version of Tierra,
these evolutionary progressions eventually stop.

Hillis demonstrated that co-evolution can spur evolu-
tionary progress [48], and co-evolutionary arms races
might be necessary to drive continual evolutionary pro-
gression by continually changing the environment. Even
so, the original and modified versions of Tierra all involve
co-evolution and yet the environment eventually becomes
essentially stable, so there must be more to the story.
Further progress on open-ended evolution would be aided
by quantitative comparisons across different artificial and
natural evolving systems. Bedau and Packard and their
collaborators have taken a step in that direction by
defining and studying evolutionary activity statistics.
Comparing data from different artificial and natural
evolving systems suggests that there are qualitatively
different classes of evolutionary dynamics, and no known
artificial system generates the kind of evolutionary
dynamics exhibited by the biosphere [49,50]. We still are
missing some insight about the mechanisms by which
evolution continually creates new kinds of environments
that elicit new kinds of adaptations.

Figure 3. Four snapshots of the evolutionary dynamics exhibited by a typical run
of Avida [46,47], a derivative of Tierra [44]. Avida consists of a population of self-
reproducing computer programs, each of which occupies one location in a two-
dimensional grid with periodic boundary conditions (i.e. the left and right edges of
the grid are connected, as are the top and bottom edges). The system is started by
seeding the grid with one self-replicating program that is designed by hand (a). As
time evolves, this program replicates and spreads on the grid. Random mutations
change the fitness of offspring programs, and higher fitness programs spread
more quickly (b–d). Fitness is determined by replication rate and success at
performing various logical operations. The evolving population of programs even-
tually fills the 100 £ 100 grid (c,d). Regions containing high-fitness programs typic-
ally contain miscellaneous isolated low-fitness programs that arise by deleterious
mutations and quickly die.

TRENDS in Cognitive Sciences 

(a) (b)

(c) (d)

High

Fitness

Low

Review TRENDS in Cognitive Sciences Vol.7 No.11 November 2003 509

http://tics.trends.com

http://www.trends.com


Evolvability
Evolvability – the capacity of evolution to create new
adaptations – depends on a system’s ability to produce
adaptive phenotypic variation, and this hinges on both
the extent to which phenotype space contains adaptive
variation and the ability of evolutionary search to find it.
For evolutionary search to explore a suitable variety of
viable evolutionary pathways, genetic operators must
generate enough appropriate evolutionary novelty. At
the same time, evolutionary memory is needed to retain
incremental improvements discovered over time. Evolv-
ability requires successfully and flexibly balancing these
competing demands for novelty andmemory; this is known
as the ‘explore–exploit’ trade-off in the machine learning
literature [6].

One way to address this trade-off is to study models in
which second-order evolution controls the genetic mech-
anisms that structure first-order evolution, thus studying
the evolution of evolvability. The simplest such genetic
mechanism is the mutation rate. Optimal and evolving
mutation rates are studied in the evolutionary compu-
tation literature, where the primary focus is on quickly
solving optimization problems (see [51] for a recent
review). As this work presumes that evolution is driven
by a fixed and externally-specified fitness function, it
might not illuminate the evolvability in settings with
implicitly specified fitness functions that unpredictably
change over time. (See [52] for the most recent work on
evolvabilty in this context.)

Swarm intelligence
Many organisms live in social groups, and artificial life
uses bottom-up models to explore how the structure and
behavior of social groups arises and is controlled. The
simplest examples concern the social organization of social
insects. Distributed networks of relatively simple insects
give rise to complex collective behaviors, involving forag-
ing, nest building, transporting resources, and the like
(for a review, see [53]). These collective behaviors are
remarkably flexible, robust and autonomous.

The attempt to design algorithms or distributed
problem-solving methods inspired by the collective behav-
ior of insect societies has come to be called ‘swarm
intelligence’, and it has obvious relevance to distributed
methods in cognitive science. Recent advances in swarm
intelligence include a mathematical theory [54] of how
groups of robots work together to solve group goals, enab-
ling quantitative and well as qualitative comparison
between theory and experiment involving robot swarms,
and an explicit formal correspondence [55] between some
swarm intelligence algorithms and the technique known
as stochastic gradient descent which is extensively used in
machine learning [56].

Artificial economics
At the opposite end of the social behavior spectrum is the
behavior of groups of humans. Although humans have
vastly more sophisticated cognitive capacities than insects,
bottom-up models of the behavior of human groups are
prevalent in artificial life, especially in application to
economics. Decentralized economic markets consist of

large numbers of adaptive agents involved in parallel local
interactions. Those local interactions give rise to macro-
economic regularities such as price structures that them-
selves influence the local interactions, and so on. The
result is a complex adaptive system with recurrent causal
chains connecting individual agent behavior with macro-
scopic market regularities.

Agent-based, bottom-up models of economic systems –
what is sometimes called ‘artificial economics’ – posit a
population of economic agents (e.g. traders or financial
institutions) governed by internal procedures (e.g. rules
for when to buy or sell, and beliefs about the conditions
of themarket). This approach has been applied to a variety
of complex phenomena associated with decentralized
economies, including inductive learning, the formation
of trade networks, the evolution of behavioral norms,
and the open-ended evolution of economic markets (for a
review, see [57]).

Evolution of language
The most complicated behavior exhibited by humans is
probably language. Indeed, language has been termed the
most complex natural system [58], because it results from
the interaction of three complex adaptive systems that
operate on different timescales: language learning on an
ontogenetic timescale, language evolution on a historical
timescale, and the evolution of the brains of language
users on a phylogenetic timescale. It is no surprise, then,
that bottom-up, artificial life methods are increasingly
being used to explain many aspects of language, including
phonetics and phonology, language acquisition, language
change, the evolution of signaling systems, the grounding
of symbols and the evolution of meanings, the emergence
of complex structured languages, and the co-evolution
of languages and language learning mechanisms (for
reviews see [58,59]).

Practical applications of artificial life
One measure of a scientific field’s success is its usefulness
for solving practical problems. By this criterion, artificial
life is a success today mainly because of applications that
exploit genetic algorithms [6,11] and offshoots like genetic
programming [60]. But biologically-inspired methods are
increasingly applied to technological problems, such as
using immune-system principles and mechanisms to pro-
tect computer systems against attacks by computer viruses
and worms [61], and designing novel strategies for navi-
gation of autonomous flight systems [62]. In addition, our
increased understanding of real biological systems is
enabling us to control them better. For example, artificial
life is helping to illuminate why normal cells evolve into
cancerous cells [63]. Finally, artificial life is used for a
variety of aesthetic purposes. There are artificial-life
approaches to music composition [64], and the techno-
artists’ journal Leonardo regularly publishes papers
concerning ALife.

The connection between life and mind
Living systems exhibit various forms of ‘cognitive’ capa-
cities in its broadest sense. Plants, bacteria, insects and
mammals all are sensitive to their environment in ways
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that affect their behavior, and they all exhibit memory and
inter-organism communication. Furthermore, the relative
sophistication of such capacities seems roughly to reflect
and explain a life form’s relative biological complexity.

Evolution presumably explains much about the origin
and nature of the mental capacities found in nature, as it
does for any adaptation. But life and mind might have a
deeper and more distinctive connection, and emergence
might be a clue to it. Cognitive science tries to explain how
cognitive capacities ultimately emerge from the behavior
of biological materials like neurons, with qualitatively
different properties, and artificial life tries to explain
how life emerges from a non-living substrate of molecules.
This methodological affinity suggests an affinity of subject
matter. However, physics explains how the solid, liquid
and gaseous phases of water emerge out of the behavior of
water molecules that individually are neither solid, liquid
or gaseous, so it cannot be said that emergence alone
entails a close connection between life and mind.

Adaptation might explain a tighter link. Open-ended
adaptablity is a hallmark of life, at least when considered
on an evolutionary time scale [65]. Similarly, following
Maturana and Varela [66], many consider the ability to
cope with a complex, dynamic, unpredictable environment
to be a defining feature of cognitive and intelligent systems
[32,34,65,67,68]. This line of argument, which is being
explored by the embodied cognition and dynamical sys-
tems approaches to cognition [34,68,69], implies a funda-
mental similarity in the key mechanisms behind living
and cognitive systems. This conclusion is supported by
Brooks’s conclusion that the future of both AI and artificial
life hinges on bridging the gap between non-living and
living matter [70]. If Brooks is right, then we can expect
‘wet’ artificial life to become inseparably intertwined with
‘soft’ and ‘hard’ artificial life, and we can expect all three to
merge with cognitive science.

Conclusions
Artificial life is an interdisciplinary investigation into one
of the most fundamental aspect of the natural world – life
itself. Its synthetic methodology is making incremental
progress on a wide range of issues, from dynamical
hierarchies and artificial cells to the evolution of complex-
ity and even language. Its ambitious agenda for the future
involves explaining how life arises from non-living sub-
strates, determining the potentials and limits of living
systems, and understanding how life is related to mind,
machines, and culture. This overlapping agenda means
that artificial life is likely to change the future face of
cognitive science in significant ways.
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The World Color Survey (WCS) data are now available on the web at
http://www.icsi.berkeley.edu/wcs/data.html.

These data represent the color naming responses of an average of 24 (mode 25) respondents in each of 110 unwritten languages
worldwide. The color stimuli for theWCSwere 330Munsell color chips representing 40 equally spaced Hues at eight levels of Value
(lightness) and maximum Chroma (saturation) plus 10 Neutral (achromatic) chips in equal Value steps. Each respondent named
each chip and then picked out from the full stimulus array the best (focal) example(s) of each term that the field worker judged to be
of major importance.

The data were gathered in the period 1976–1979 by field linguists of the Summer Institute of Linguistics, with direction by Brent
Berlin, Paul Kay andWilliamMerrifield. The web archive was created by Richard Cook, with direction by Paul Kay and Terry Regier.

The data in this archive embody significant corrections of earlier versions of the data, including corrections based on
communications with the original field workers.

No earlier version of these data should be considered valid for scientific research.
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