September 7:

Math 432 Class Lecture Notes

e Uniqueness of Splitting Fields
e The Fundamental Theorem of Algebra

0.1 Uniqueness of Splitting Fields

Earlier we saw that there was a splitting field for any polynomial. We now
prove uniqueness. Curiously, it turns out that we have to state and prove
a slightly stronger result, for the sake of making an induction argument go
smoothly.

Theorem 1. If ¢: F — F is a field isomorphism and £ and E are splitting
fields of polynomials f € F[z] and f € F[z], respectively, then there exists
an isomorphism ®: £ — F such that ®(z) = ¢(x) for all z in F.

Proof: By induction on [E: F]. If [E: F] =1, then E = F and E = F, so
¢ itself is the desired mapping.

Assume that the theorem is true for any extension of fields of degree less
than n. Let p(x) be an irreducible factor of f(z), let o be a zero of p(x) in
E, and let § be a zero of ¢(p(z)) in E.

By the Uniqueness of Root Fields Theorem, there exists an isomorphism
®, from F(a) to F(B) that agrees with ¢ on F and carries o to f.

So f(z) = (z — a)g(z) for some g(x) € F(a)[z]. Then F is a splitting
field for g(z) over F(a) and E is a splitting field for ¢1(g(x)) over F(3). The
degree of g is less than the degree of f, so [E : F(a)] < [E : F] = n and
thus, by the induction assumption, there exists an isomorphism ® from E to
E that agrees with ®; on F(a) and therefore with ¢ on F.
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0.2 Fundamental Theorem of Algebra

There is a surprisingly simple proof of the Fundamental Theorem of Alge-
bras that uses the existence of splitting fields, the theorem on symmetric
polynomials proved last time, the fact that square roots exist in the complex
numbers, and the fact that a polynomial of odd degree with real coefficients
has a real root.

More precisely, we prove:

Theorem 2. Any polynomial of positive degree in Clz| has a root in C.

From this one easily deduces that any polynomial in C[z| factors into
linear factors, i.e., that C is a splitting field for any f € C[z], i.e., that C is
““algebraically closed.”

Proof. Let f be a polynomial of degree n > 0. Without loss of generality, we
can assume that f has real coefficients; indeed, the polynomial ff has real
coefficients, and if it has a complex root then so does f.

Write the degree n as a power of 2 times an odd number: n = 2°m.
We prove that a polynomial f with real coefficients has a complex root by
induction on e.

The base case is e = 0, i.e., the degree n is odd. In this case the result
is well-known from the Intermediate Value Theorem in calculus: for large
positive and negative x, f(z) has opposite signs, and is hence zero somewhere
in between.

Now assume that e > 0 and that the result is true for all real polynomials
whose degree has a smaller power of 2 than 2°.

Choose a splitting field E for f over the real numbers, so that

n

f(t) = ao [T(t — o)

i=1

for ap € R and «; € E. For a real number A consider the polynomial

g(t) = [t — s — o; — Avix).
i<j
The product is over all pairs of roots of f, so the degree of ¢ is
n(n —1)

=2tm(n —1).
. m(n 1)



0.2. FUNDAMENTAL THEOREM OF ALGEBRA 3

The coefficients of g are symmetric functions of the «; and, by the symmetric
functions theorem, are polynomials in the elementary symmetric functions
of the «; and are therefore real numbers.

By our induction assumption, we know that ¢ has a complex root! Thus
for every A there is a pair 7, j such that

a; + o+ dya; € C.

Since there are infinitely many A\ and only finitely many pairs ¢, j it follows
that there are distinct A, \’ that give rise to the same pair. From the previous
equation and the equation

a;+a; + Naya; € C.

we deduce that a;a; € C (subtract the equations and divide by A — ). It
follows by subtracting the real number Aa;o; that o; 4 «; is complex.
Therefore the polynomial

(t — Oéz)(t — Oéj) = t2 — (041 + Oég)t + o

has complex coefficients. By the quadratic formula it has a root in C and we
are finished. O



