
September 7:

Math 432 Class Lecture Notes

• Uniqueness of Splitting Fields

• The Fundamental Theorem of Algebra

0.1 Uniqueness of Splitting Fields

Earlier we saw that there was a splitting field for any polynomial. We now
prove uniqueness. Curiously, it turns out that we have to state and prove
a slightly stronger result, for the sake of making an induction argument go
smoothly.

Theorem 1. If φ:F → F̃ is a field isomorphism and E and Ẽ are splitting
fields of polynomials f ∈ F [x] and f̃ ∈ F̃ [x], respectively, then there exists
an isomorphism Φ:E → Ẽ such that Φ(x) = φ(x) for all x in F .

Proof: By induction on [E : F ]. If [E : F ] = 1, then E = F and Ẽ = F̃ , so
φ itself is the desired mapping.

Assume that the theorem is true for any extension of fields of degree less
than n. Let p(x) be an irreducible factor of f(x), let α be a zero of p(x) in
E, and let β be a zero of φ(p(x)) in Ẽ.

By the Uniqueness of Root Fields Theorem, there exists an isomorphism
Φ1 from F (α) to F̃ (β) that agrees with φ on F and carries α to β.

So f(x) = (x − α)g(x) for some g(x) ∈ F (α)[x]. Then E is a splitting
field for g(x) over F (α) and Ẽ is a splitting field for φ1(g(x)) over F̃ (β). The
degree of g is less than the degree of f , so [E : F (a)] < [E : F ] = n and
thus, by the induction assumption, there exists an isomorphism Φ from E to
Ẽ that agrees with Φ1 on F (α) and therefore with φ on F .
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0.2 Fundamental Theorem of Algebra

There is a surprisingly simple proof of the Fundamental Theorem of Alge-
bras that uses the existence of splitting fields, the theorem on symmetric
polynomials proved last time, the fact that square roots exist in the complex
numbers, and the fact that a polynomial of odd degree with real coefficients
has a real root.

More precisely, we prove:

Theorem 2. Any polynomial of positive degree in C[x] has a root in C.

From this one easily deduces that any polynomial in C[x] factors into
linear factors, i.e., that C is a splitting field for any f ∈ C[x], i.e., that C is
“‘algebraically closed.”

Proof. Let f be a polynomial of degree n > 0. Without loss of generality, we
can assume that f has real coefficients; indeed, the polynomial ff has real
coefficients, and if it has a complex root then so does f .

Write the degree n as a power of 2 times an odd number: n = 2em.
We prove that a polynomial f with real coefficients has a complex root by
induction on e.

The base case is e = 0, i.e., the degree n is odd. In this case the result
is well-known from the Intermediate Value Theorem in calculus: for large
positive and negative x, f(x) has opposite signs, and is hence zero somewhere
in between.

Now assume that e > 0 and that the result is true for all real polynomials
whose degree has a smaller power of 2 than 2e.

Choose a splitting field E for f over the real numbers, so that

f(t) = a0

n∏
i=1

(t− αi)

for a0 ∈ R and αi ∈ E. For a real number λ consider the polynomial

g(t) =
∏
i<j

(t− αi − αj − λαiαj).

The product is over all pairs of roots of f , so the degree of g is

n(n− 1)

2
= 2e−1m(n− 1).



0.2. FUNDAMENTAL THEOREM OF ALGEBRA 3

The coefficients of g are symmetric functions of the αi and, by the symmetric
functions theorem, are polynomials in the elementary symmetric functions
of the αi and are therefore real numbers.

By our induction assumption, we know that g has a complex root! Thus
for every λ there is a pair i, j such that

αi + αj + λαiαj ∈ C.

Since there are infinitely many λ and only finitely many pairs i, j it follows
that there are distinct λ, λ′ that give rise to the same pair. From the previous
equation and the equation

αi + αj + λ′αiαj ∈ C.

we deduce that αiαj ∈ C (subtract the equations and divide by λ − λ′). It
follows by subtracting the real number λαiαj that αi + αj is complex.

Therefore the polynomial

(t− αi)(t− αj) = t2 − (α1 + α2)t+ α1α2

has complex coefficients. By the quadratic formula it has a root in C and we
are finished.


