
September 5:

Math 432 Class Lecture Notes

• The Frobenius automorphism

• Roots of polynomials in a field

• Symmetric polynomials

0.1 Frobenius

An automorphism of a field F is a bijection that is a homomorphism for
addition and multiplication.

In characteristic p, there is a canonical homomorphism of fundamental
importance, useful both in a couple of the homework problems, and later on
in this course.

Definition 1. If F has characteristic p, then the Frobenius map, sometimes
written φp, is defined by

φp(x) = xp.

Theorem 2. φp is an automorphism.

Proof. The Frobenius map is obviously a homomorphism for multiplication.
From the fact that the interior binomial coefficients are divisible by p, and
hence zero since p = 0 in F , we see that φp is a homomorphism for addition:

φp(x+ y) = (x+ y)0 =
p∑

k=0

(
p

k

)
xkyp−k = xp + yp = φp(x) + φp(y).
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If F is a finite field with q = pn elements then any nonzero element x is an
element of the multiplicative group F ∗ of order q − 1 and therefore satisfies
xq−1 = 1. This means that any element of F satisfies

φnp (x) = xp
n

= xq = x

and it follows that the Frobenius automorphism has order dividing n. Later
we will see that it has order exactly equal to n, and that the only automor-
phisms of F are powers of φp.

0.2 Roots of a polynomial in a field

In the homework, and a later points in the course, we need to know that
the number of roots of a polynomial in a field is at most the degree of the
polynomial.

Theorem 3. If F is a field, f is an element of F [x], and deg(f) = n then
f has at most n roots in F .

The proof follows from the fact that f(a) = 0 is equivalent to x − a
dividing f , which in turn follows from the division algorithm for polynomials
with coefficients in a field.

None of these results need hold over a ring. For instance, x2−1 ∈ Z/8Z[x]
has 4 roots, and x3 − x ∈ Z/6Z[x] has 6 roots.

0.3 Symmetric polynomials

Let x1, · · · , xn be indeterminates (in specific situations these variables can
be specialized to any needed values, e.g., to the roots of a polynomial of
degree n).

The elementary symmetric functions of the xi are defined by the
equation

n∏
i=1

(t+ xi) =
n∑
k=0

ekt
n−k .

Thus ek is the product of all products of k distinct xi, and e0 = 1. For n = 4
the elementary symmetric functions are
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e1 = x1 + x2 + x3 + x4

e2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x3 + x3x4

e3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

e4 = x1x2x2x4

Sometimes the defining equation is written

n∏
i=1

t− xi =
n∑
k=0

(−1)kekt
n−k

to emphasize its applicability to roots of polynomials.
A polynomial in the xi is said to be symmetric if it is unchanged when

the variables are permuted. The elementary symmetric functions ek are sym-
metric, as are the power sums

pk :=
n∑
i=1

xki .

Theorem 4. Any symmetric polynomial is uniquely a polynomial in the ek,
1 ≤ k ≤ n.

Proof. A polynomial is a linear combination of monomials

xa1
1 · · ·xann .

The degree of a monomial is the sum
∑
ai of the exponents.

Define a total order on monomials by saying that m > m′ if the degree of
m is greater than the degree of m′, and that, if the degrees are equal, then
m > m′ if the first exponent where m and m′ disagree has ai > a′i. More
precisely,

xa1
1 · · ·xann > x

a′1
1 · · ·xa

′
n
n

if
∑
ai >

∑
a′i, or if

∑
ai =

∑
a′i and there is a j such that ai = a′i for i < j,

and aj > a′j.
If f ∈ F [x1, · · · , xn] is a polynomial in the n variables xi then define

init(f) to be the largest monomial (with respect to the above order) that
occurs in f . For instance,

init(ek) = x1x2 · · ·xk.
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Now assume that f is symmetric, that init(f) is xa1
1 · · ·xann , and that the

corresponding term in f is cxa1
1 · · ·xann for some nonzero constant c.

A moment’s reflection shows that the leading term can be cancelled by a
symmetric function, i.e., that the leading term of

f − cea1−a2
1 ea2−a3

2 · · · ean−1−an−1

n−1 eann

is strictly smaller than the leading term init(f) of f . This new function is
symmetric, and after finitely many repetitions of this step we end up with 0,
i.e., we express f as a polynomial in the elementary symmetric functions.
This finishes the proof of existence.

If there are two different expressions for f as a polynomial in the ek then
there is a polynomial relation

g(e1, · · · , en) = 0

satisfied by the elementary symmetric functions. If the initial term of g(y1, · · · , yn),
as a polynomial in indeterminates yi, is

∏
yaii then the initial term of g(e1, · · · , en),

as a polynomial in the xi, is easily checked to be∏
xbii

where
bi :=

∑
j≥i

aj.

However, the mapping from the n-tuple of a’s to the n-tuple of b′s is bijective.
(There is an inverse map: ai = bi − bi+1.) Thus if g is a nonzero polynomial
then its leading term, as a polynomial in the xi, is not cancelled by any other
term, and we see that a polynomial relation is impossible.

This finishes the proof of the theorem.

An important special case of this (that arises in diverse contexts, in-
cluding statistics and group representations) is the find explicit polynomials
expressing the power sums in terms of the elementary symmetric functions
(see the homework).


