September 5:

Math 432 Class Lecture Notes

e The Frobenius automorphism
e Roots of polynomials in a field

e Symmetric polynomials

0.1 Frobenius

An automorphism of a field F' is a bijection that is a homomorphism for
addition and multiplication.

In characteristic p, there is a canonical homomorphism of fundamental
importance, useful both in a couple of the homework problems, and later on
in this course.

Definition 1. If F has characteristic p, then the Frobenius map, sometimes
written ¢,, is defined by
Pp(z) = 2’

Theorem 2. ¢, is an automorphism.

Proof. The Frobenius map is obviously a homomorphism for multiplication.
From the fact that the interior binomial coefficients are divisible by p, and
hence zero since p = 0 in F', we see that ¢, is a homomorphism for addition:

dol(e+y) =ty =3 (p) 2oy — a4 — 6,(@) + 0u(y).
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If F' is a finite field with ¢ = p™ elements then any nonzero element x is an
element of the multiplicative group F™ of order ¢ — 1 and therefore satisfies
297! = 1. This means that any element of I satisfies

and it follows that the Frobenius automorphism has order dividing n. Later
we will see that it has order exactly equal to n, and that the only automor-
phisms of F' are powers of ¢,.

0.2 Roots of a polynomial in a field

In the homework, and a later points in the course, we need to know that
the number of roots of a polynomial in a field is at most the degree of the
polynomial.

Theorem 3. If F'is a field, f is an element of Flz], and deg(f) = n then
f has at most n roots in F.

The proof follows from the fact that f(a) = 0 is equivalent to x — a
dividing f, which in turn follows from the division algorithm for polynomials
with coefficients in a field.

None of these results need hold over a ring. For instance, 2?—1 € Z/8Z[z]
has 4 roots, and z® — z € Z/6Z[x] has 6 roots.

0.3 Symmetric polynomials

Let xq,---,z, be indeterminates (in specific situations these variables can
be specialized to any needed values, e.g., to the roots of a polynomial of
degree n).

The elementary symmetric functions of the x; are defined by the

equation
n

H(t + LUZ) = Z ektnik
k=0

i=1
Thus ey, is the product of all products of k£ distinct x;, and ey = 1. For n =4
the elementary symmetric functions are



0.3. SYMMETRIC POLYNOMIALS 3

€1 = X1+ Xog+ X3+ x4

€2 = X1T9+ T1X3 + T1T4 + T2T3 + ToX3 + T3Ty
€3 = T1T2T3 + T1T2Ty4 + T1X3%4 + ToT3Ty

€4 = T1T2T2T4

Sometimes the defining equation is written

n n

[t =2 =Y (—1)rext" ™
i=1 k=0
to emphasize its applicability to roots of polynomials.
A polynomial in the x; is said to be symmetric if it is unchanged when
the variables are permuted. The elementary symmetric functions e are sym-
metric, as are the power sums

n
pri=) l.
i=1

Theorem 4. Any symmetric polynomial is uniquely a polynomial in the ey,
1<k <n.

Proof. A polynomial is a linear combination of monomials

an
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The degree of a monomial is the sum Y a; of the exponents.
Define a total order on monomials by saying that m > m’ if the degree of
m is greater than the degree of m’, and that, if the degrees are equal, then
m > m’ if the first exponent where m and m’ disagree has a; > a;. More
precisely, /
o

a
$?1...x2n>$11...xnn

if > a; > Y al, orif Y a; = Y a} and there is a j such that a; = a} for ¢ < j,
and a; > aj.

If f € Flxy,---,x,] is a polynomial in the n variables z; then define
init(f) to be the largest monomial (with respect to the above order) that
occurs in f. For instance,

init(ex) = 129 - - - T



Now assume that f is symmetric, that init(f) is 2{* - - - 2%, and that the
corresponding term in f is cz{' - - - 2% for some nonzero constant c.

A moment’s reflection shows that the leading term can be cancelled by a
symmetric function, i.e., that the leading term of

f _ Cetfl—azegg—ag . ezn__ll_an_lezn

is strictly smaller than the leading term init(f) of f. This new function is
symmetric, and after finitely many repetitions of this step we end up with 0,
i.e., we express f as a polynomial in the elementary symmetric functions.
This finishes the proof of existence.

If there are two different expressions for f as a polynomial in the e; then
there is a polynomial relation

gler,---,e,) =0

satisfied by the elementary symmetric functions. If the initial term of g(yy, -« -, yn),
as a polynomial in indeterminates y;, is [T ;" then the initial term of g(ey, - - -, €,),
as a polynomial in the z;, is easily checked to be

[
where
b; = Z a;.
Jj2i
However, the mapping from the n-tuple of a’s to the n-tuple of b's is bijective.
(There is an inverse map: a; = b; — b;y1.) Thus if g is a nonzero polynomial
then its leading term, as a polynomial in the x;, is not cancelled by any other
term, and we see that a polynomial relation is impossible.
This finishes the proof of the theorem.
O

An important special case of this (that arises in diverse contexts, in-
cluding statistics and group representations) is the find explicit polynomials
expressing the power sums in terms of the elementary symmetric functions
(see the homework).



