
September 28:

Math 431 Class Lecture Notes

• Discriminants, continued

• Examples

0.1 Discriminants redux

Let F be a number field of degree n over Q. If α1, · · · , αn is a basis of F
over Q then its discriminant is defined by

disc(α1, α2, · · · , αn) = det[α
(j)
i ]2 = det[TrF/Q(αiαj)].

If β1, · · · , βn is a new basis, it can be described in terms of the basis of αi
by a “change of basis matrix” A = [aij] whose entries are determined by
expressing each of the new basis vectors in terms of the old:

βi =
n∑
j=1

aijαj, 1 ≤ i ≤ n.

The entries aij are in the ground field Q, and the matrix A is nonsingular
since the change of basis matrix B from the new basis to the old satisfies
AB = BA = In, i.e., B is the inverse of the matrix A. Indeed, from the
linear independence of the α’s and the formula

αi =
n∑
j=1

bij
n∑
k=1

ajkαk
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we see that the ij entry of BA is the same as the ij entry of the n by n
identity matrix In.

If M = [α
(j)
i ] is the matrix in the definition of the discriminant of the

original basis, then it is easy to work out that the “discriminant matrix” for
the new basis of β’s is AM . It follows that

disc(β1, · · · , βn) = det(AM)n = det(A)2 det(M)2 = det(A)2disc(α1, · · · , αn).

Thus when bases are changed the discriminant changes by the square of the
determinant of the change of basis matrix.

Theorem 1. The discriminant of any basis is nonzero. Its sign depends only
on the field, and not on the choice of basis.

Proof. Let F = Q(α). Then the powers of α, from α0 = 1 up to αn−1 form
a basis, and the discriminant is the discriminant of the minimal polynomial
of α. The discriminant of any polynomial with distinct roots is nonzero, and
the first statement in the theorem follows immediately. The second follows
from the fact that the sign of the discriminant is unchanged by multiplying
by a square.

Remark 2. Later we will see that the sign of the discriminant is (−1)r2

where r2 is the number of pairs of complex conjugate roots of the minimal
polynomial of some (or any) generator α.

0.2 Examples

Example 3. Let F = Q(α) be a quadratic extension, where

mα(x) = x2 + ax+ b = (x− α)(x− α′).

Then

disc(1, α) = det

[
Tr(1) Tr(α)
Tr(α) Tr(α2)

]
= det

[
2 −a
−a a2 − 2b

]
= a2 − 4b.

In calculating the traces we can find Tr(α2) by doing symmetric function
calculations (the trace of a power is a power sum, and we know the elementary
symmetric functions), or by using linearity of the trace, starting with α2 =
−aα− b so that

Tr(α2) = Tr(−aα− b) = −aTr(α)− bTr(1) = a2 − 2b.
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Note that the final form of the discriminant is what is classically called
the discriminant of the quadratic polynomial x2 + ax+ b.

Example 4. We calculate the discriminant of a special form of a basis of a
cubic field. Next time we will how to do these calculations with less effort.

Suppose that F = Q(α) is a cubic extension, with the minimal polynomial
of α having the form

α3 + aα + b = 0.

If the three roots of the cubic are α1 = α, α2, α3 then the discriminant of the
basis 1, α, α2 is ∏

i<j

(αi − αj)2

as we saw earlier by considering a Vandermonde matrix.
To find this explicitly in terms of a and b, it is convenient to compute

some traces, since

disc(1, α, α2) = det

 Tr(1) Tr(α) Tr(α2)
Tr(α) Tr(α2) Tr(α3)
Tr(α2) Tr(α3) Tr(α4)

 .
We find the first three traces by simple symmetric function exercises:

Tr(1) = 3, T r(α) = e1 = 0, T r(α2) = p2 = e2
1 − 2e2 = 0− 2a = −2a.

The remaining traces can be computed by the convenient device of using
linearity (which, in effect, gives a recursion on the traces of powers of α).
Specifically, from α3 = −aα− b we get

Tr(α3) = −aTr(α)− bTr(1) = −3b

and from α4 = −aα2 − bα we get

Tr(α4) = −aTr(α2)− bTr(α) = 2a2.

Finally, taking the indicated determinant gives the desired discriminant

disc(1, α, α2) = −4a3 − 27b2.

This is called the discriminant of the cubic polynomial. With more work one
can calculate the discriminant of the general cubic polynomial (i.e., one not
missing the quadratic term); this discriminant has 5 terms that are monomi-
als in the three variables.
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Remark 5. For a non-monic polynomial f(x) = a
∏n
i=1(x− αi) it turns out

to be best (for non-obvious reasons that might be touched on next time) to
define the discriminant to be

disc(f) = a2n−2
∏
i<<j

(αi − αj)2.

Remark 6. The discriminant plays a famous role in galois theory in the
following way. Let F be the splitting field of a polynomial f of degree n
with rational coefficients. Then elements of the galois group G := Aut(f)
permute the roots of f , and distinct elements induce distint permutations
of the roots. It follows that G can be identified with a subgroup of the
symmetric group Sn.

Theorem 7. The galois group G is contained in the alternating group An if
and only if the discriminant of f is a perfect square in Q.

Example 8. Why does the determinant of the Vandermonde matrix have
the specific value that it does? Well, as is often a bright idea in algebraic
environments, we replace numbers by variables, i.e., let ai, 1 ≤ i ≤ n be
indeterminates and consider

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2
...

...
...

. . .

1 an a2
n · · · an−1

n

 .

Clearly this is zero if equal values are substituted for any of the variables.
This means that the polynomial in question is divisible by ai − aj for all
distinct i and j. However, the degree of the product∏

i<j

(aj − ai)

is n(n− 1)/2, and this is also the degree of the indicated determinant. Thus
the Vandermonde determinant is equal to this product times a constant. The
diagonal term in the determinant expansion is

a2a
2
3 · · · an−1

n

and one checks that this occurs in the product with coefficient 1. Thus the
Vandermonde determinant is equal to the product.


