
September 26:

Math 432 Class Lecture Notes

• Traces and Norms

• Discriminants

0.1 Traces and Norms

If E/F is a finite extension of fields, then for every element x ∈ E we get a
“multiplication by x” mapping from E to E that is an endomorphism of an
F -vector space of dimension n := [E : F ]. The trace and norm of this element
were defined to be the trace and determinant of this linear transformation,
respectively.

From these definitions it follow immediately that the trace and norm are
elements of F . It also follows that the trace is a homomorphism for addition,
and the norm is a homomorphism for multiplication.

Theorem 1. For all x, y in E,

TrE/F (x+ y) = TrE/F (x) + TrE/F (y), NE/F (xy) = NE/F (x)NE/F (y).

Now we express the trace and norm of an element of E in terms of the
minimal polynomial of the element.

Theorem 2. Let β be any element of E, and assume that its minimal poly-
nomial over F is

mβ(x) = xk − a1x
k−1 + · · ·+ (−1)kak.
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Then n is divisible by k and

TrE/F (β) =
n

k
a1, NE/F (β) = a

n/k
k .

Proof. It is fairly easy to verify this directly, but more amusing to do it by
using linear algebra.

First note that F (β) has degree k over F , so that n = [E : F ] is divisible
by k.

It is known (under the rubric “Rational Canonical Form”) that every
square matrix A over a field is similar to a matrix that is a direct sum of
companion matrices

A = C1 + C2 + · · ·+ Cm

where Ci is the companion matrix of a polynomial fi and fi divides fi+1 for
1 ≤ i < m.

Remark 3. 
0 0 0 −d
1 0 0 −c
0 1 0 −b
0 0 1 −a


This generalizes in an obvious way to arbitrary monic polynomials, and

the key property is that the characteristic polynomial of the companion ma-
trix of f is f itself.

Remark 4. The fi in the rational canonical form are called invariant fac-
tors of A. Moreover, they are unique: two matrices have the same rational
canonical form if and only if they are similar.

Remark 5. In the rational canonical form, the characteristic polynomial of A
is the product of the fi. The minimal polynomial, i.e., the monic polynomial
of smallest degree that vanishes when A is substituted, is the last invariant
factor fm.

Let mulβ denote the “multiplication by β” linear transformation on E,
as an F vector space. Since the minimal polynomial of mulβ is irreducible,
the invariant factors are of the form 1, 1, · · · ,mβ,mβ, · · · ,mβ. Thus the char-
acteristic polynomial of mulβ is a power of mβ, say

fβ = mr
β.
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By comparing degrees, we see that n = kr.
The trace of mulβ is the negative of the coefficient of xn−1 in the charac-

teristic polynomial, so
TrE/F (β) = ra1.

The determinant of mulβ is (−1)n times the constant coefficient, so

(−1)nNE/F (β) =
(
(−1)kak

)r
.

The relationships in the theorem now follow from the fact that n = kr.

Now we express the trace and norm in terms of the embeddings of E into a
splitting field. Using the Primitive Element Theorem, there is an α such that
E = F (α). If K is the splitting field of mα then by the Embedding Theorem
there are n embeddings of E into K; label them σ1, σ2, · · · , σn where we let
σ1 be the identity. To simplify notation slightly we write

β(i) := σi(β)

where β is any element of F .

Theorem 6.

TrE/F (β) =
∑
i

β(i), NE/F (β) =
∏
i

β(i).

Corollary 7. If β ∈ F then

TrE/F = nβ, NE/F (β) = βn.

Proof. (of the theorem) Let [F (β) : F ] = k, and [E : F (β)] = r, so that
kr = n. There are k embeddings of F (β) into K and, by the generalized
form of the Emedding Theorem, each of those embeddings has r extensions
to an embedding of E into K. We find that

TrE/F (β) = ra1 = r
∑
τ

τ(β)

since coefficient a1 of mβ is the sum of the distinct roots of mβ. It follows
that

TrE/F (β) =
∑
τ

τ(β) =
∑

σi extends τ

∑
τ

τ(β) =
∑
i

σi(β) =
∑
i

β(i)

as desired. The formula for the norm follows from a very similar calculation.
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This result reduces the calculation of norms and traces to exercises in
elementary symmetric functions.

Corollary 8. If β = g(α) for some polynomial g(x) ∈ F [x] then

TrE/F (β) =
∑
i

g(α(i)), NE/F (β) =
∏
i

g(α(i)).

The sum and product of g evaluated at the conjugates of α are symmetric
functions in the α(i) and, by the basic theorem on elementary symmetric
functions, are polynomials in the coefficients of mα.

Example 9. If mα(x) = xn − a1x
n−1 + a2x

n−2 − · · · then

Tr(α2) =
∑
i

(
α(i)

)2
=

(∑
i

α(i)

)2

− 2
∑
i<j

α(i)α(j) = a2
1 − 2a2.

Example 10. If u is an element of F then

N(α− u) =
∏
i

(α(i) − u) = (−1)n
∏
i

(u− α(i) = (−1)nmα(u).

0.2 The discriminants of a basis

Let F be a number field of degree n over Q.

Definition 11. If α1, α2, · · · , αn is a basis of F over Q then the discriminant
of the basis is defined to be the square of the determinant

disc(α1, α2, · · · , αn) := det[α
(j)
i ]2

of the matrix whose entry in the i-th row and j-th column is the image of αi
under the j-th embedding.

Remark 12. Although the numbering of the basis elements is fixed, the
numbering of the embeddings is arbitrary. However, if the embeddings are
permuted the determinant only changes at most by a sign, so the square of
the determinant is independent of the choice of numbering.

Theorem 13. (a) The discriminant of a basis {αi} is an element of Q.
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(b) The discriminant is given by

disc(α1, α2, · · · , αn) = det[TrF/Q(αiαj)].

Proof. The product of matrices M = [aij] and N = [bij] is

MN =

[∑
k

aikbkj

]

where in each case the index i refers to the row and the index j refers to
the column. Applying this to the matrix M = [α

(j)
i ] in the definition of the

discriminant, and its transpose, we find that

disc(αi) = det(M)2 = det(M) det(M t) = det(MM t) (1)

= det([
∑
k

α
(k)
i α

(k)
j ]) = det[TrF/Q(αiαj]. (2)

This proves the second claim in the theorem, and the first claim follows
immediately since each trace, and therefore the determinant of the matrix of
traces, is a rational number.

There is a special case where the discriminant is especially easy to com-
pute, namely when the basis is a “power basis” consisting of the powers of
an element α:

1, α, α2, · · · , αn−1.

In this case the matrix M in the definition of the discriminant is

M =
[(
α(j)

)i]
0≤i<n,1≤j≤n

.

This is the famous Vanderonde matrix, whose determinant is

det(M) =
∏
i<j

(α(j) − α(i)).

Therefore
disc(1, α, α2, · · · , αn−1) =

∏
i<j

(
α(j) − α(i)

)2

which is called the discriminant of the (monic) polynomial mα. In the near
future we will learn techniques for calculating this discriminant efficiently.
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Remark 14. The word “discriminant” will be used in several different ways,
though there isn’t much real chance of ambiguity, since we will always be tak-
ing the discriminant of something specific. So far, we know the discriminant
of a basis, and of a polynomial. Later, we will learn that the ring of integers
has a basis, and will define the discriminant of a number field to the the
discriminant of such a basis.


