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0.1 Primes

Recall, that to find primes in Z[i] it suffices to factor (rational) prime num-
bers p € Z.

Indeed, if P is a prime in Z[i] then N(P) is an integer. Since P is
irreducible it must divide one of the primes that divides N(P).

If the ring of integers Zp is a PID the same story holds. If Zp isn't a
PID, then in turns out that the same story holds if we consider ideals P:
Every ideal factors uniquely into a produce of prime ideals, and these ideals
can be determined by factoring the ideals (p) := pZp generated by rational
primes p.



0.2 Pell’s equation

The existence of nontrivial solutions to Pell’s equation x? — dy? = 41 can be
proved in several ways. One is to explicitly give an algorithm using continued
fractions. Another is to apply a special case of a result that will be proved
later in the course for arbitrary number fields. Another is to use an argument
about approximation of algebraic numbers by rational numbers; specially one
shows that for all irrational o and all positive integers n there are y, z such
that

This can be used to show that there are infinitely many approximations

1

a—(z < —,

o= a/9)l < -

which in turn implies that there exist z, y such that |22 — dy?| < 2v/d, which
finally implies that there exist z, y such that |z* — dy?| = 1.

It’s not clear which of these arguments Neukirch had in mind in the exer-

cise earlyl on in his text, or whether there is a different and better argument.

0.3 Embeddings

Our investigations into galois theory culminated in being able to count em-
beddings of separable field extensions into splitting fields. This did not re-
quire any of the results of galois theory that we didn’t prove (e.g., the fun-
damental theorem of galois theory or its immediate precursors, such as the
independence of characters).

We’ll need the following result in several contexts.

Theorem 1. (Embedding Theorem) Let E be a separable extension of de-
gree n of a field F. Let K be an extension of F that is the splitting field
over F' of a separable polynomial (with coefficients in F'). Then there are n
embeddings of E into K, i.e.,

|Homp(E, K)| = n.

Remark 2. The theorem was proved by generalizing to a “relative” version
that involved extending a given automorphism of ground fields, and then
proving the generalized theorem with an easy proof by induction.
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Remark 3. On several occasions we will number the embeddings oy, - - -, o;
it is customary to let o; be the identity map.

We will also be interested in the set Homg(F, C) of field embeddings
of F' into the complex numbers. We can, without loss of generality, assume
that F' is contained in the complex numbers, and that a splitting field K
that contains it is also contained in the complex numbers. Then all of the
n = [F: Q] embeddings given in the above theorem take their image in K.

An embedding of a number field F' into C is said to be real (resp.
complex) if its image is contained (resp., not contained) in the real num-
bers R C C. Complex embeddings come in pairs (if o is an embedding so is
its complex conjugate x — o(z)). So if r; is the number of real embeddings
and ry is the number of complex conjugate pairs of embeddings then

7’1—1—27’2:71.

Example 4. Suppose F = Q(«). (We will soon see that any number field
is of this form.) Any embedding takes « to a root of m, q. Indeed, we apply
o to

0=myqla)=a" +aa™ '+, a; € Q

we see that o(«) is a root of the same polynomial. So 7 is the number of
real roots of m, and 7y is the number of pairs of complex conjugate roots.
Therefore

e The field F = Q(v/2) has r; = 1, 7y = 1 since #* — 2 = 0 has one real
root and a pair of complex conjugate roots.

e The polynomial

1 1 1
x — cos2m/T)(x — cosdn/T)(x — cos67/7) = 2° + —x®> — —x — —
2 2 8

has three real roots, so its root field has r; = 3,1, = 0.

0.4 Primitive Element Theorem

In several circumstances it can be useful to know that in any number field
F there is an element « that generates the field, i.e., F' = Q(«). This turns
out to be any easy application of the emedding theorem.



Theorem 5. Primitive Element Theorem. If F is a finite separable
extension of a field F' then there is an element « of E such that E' = F(«).

Proof. 1f F is finite, then it suffices to take a to be a generator of the cyclic
group E*. So from now on we can assume that E is infinite.

By induction on the number of generators, it suffices to find a single
generator for a field £ = F(«,3). Let n := [E : F|, and let oy, --,0, be
the embeddings of F into a normal extension K of F' that contains F. For
Ain F', let

g(x) = [ oi(a) + 20,(3) — 7j(@) — 27;(B).
i<j

Note that all factors are nonzero, since the embeddings are distinct, and
are determined by what they do to a and 3. In addition, the coefficients are
all in F, since they are symmetric functions of the conjugates of a and f3.

Thus the polynomial g is a nonzero polynomial with coefficients in F', and
there is a A € F' such that g(\) # 0. (Over a finite field it is in fact possible
for a nonzero polynomial to have all of its values equal to 0.)

Let v = a+ A3. Then each o;(7) is a root of g, and they are all distinct,
so the degree of F'(y) over F' is at least n. Since F(7) is contained in the
field F'(«, 3) of degree n, it follows that the degree of v is exactly n, and

which finishes the proof. O

0.5 Traces and Norms

If E/F is a finite extension of fields, then for every element z € E we get a
“multiplication by z” mapping from F to E that is an endomorphism of an
F-vector space of dimension n := [E : F].

We define the norm and trace of the element z, from E down to F, to
be the determinant and trace of this endomorphism; let mul, denote the
multiplication by x map, so that

Ng/p(z) = det(mul,), Trg/p(z) == Tr(muly).

We will run into the trace and norm again and again, and will need the
following basic results (to be proved next time).
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Theorem 6. Let x and y range over elements of F'. Then:
L] NE/F<JZ) €F7 TTE/F(ZL‘) eF

o Ng/p(zy) = Ngjp(x)Ng/p(y), Trep(c+y) =Trep(@)Trer(y).

Ng/p(z) = Ha(az), Trg/p(z) = Za(w)

oz

where the sum and product range over all embeddings of E into a
splitting field K of E over F.



