
September 24:

Math 432 Class Lecture Notes

• Primes

• Pell’s equation

• Embeddings

• Primitive Element Theorem

• Traces and Norms

0.1 Primes

Recall, that to find primes in Z[i] it suffices to factor (rational) prime num-
bers p ∈ Z.

Indeed, if P is a prime in Z[i] then N(P ) is an integer. Since P is
irreducible it must divide one of the primes that divides N(P ).

If the ring of integers ZF is a PID the same story holds. If ZF isn’t a
PID, then in turns out that the same story holds if we consider ideals P :
Every ideal factors uniquely into a produce of prime ideals, and these ideals
can be determined by factoring the ideals (p) := pZF generated by rational
primes p.
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0.2 Pell’s equation

The existence of nontrivial solutions to Pell’s equation x2− dy2 = ±1 can be
proved in several ways. One is to explicitly give an algorithm using continued
fractions. Another is to apply a special case of a result that will be proved
later in the course for arbitrary number fields. Another is to use an argument
about approximation of algebraic numbers by rational numbers; specially one
shows that for all irrational α and all positive integers n there are y, z such
that ∣∣∣∣α− y

z

∣∣∣∣ < 1

zn
.

This can be used to show that there are infinitely many approximations

|α− (x/y)| < 1

yz
,

which in turn implies that there exist x, y such that |x2−dy2| < 2
√
d, which

finally implies that there exist x, y such that |x2 − dy2| = 1.
It’s not clear which of these arguments Neukirch had in mind in the exer-

cise earlyl on in his text, or whether there is a different and better argument.

0.3 Embeddings

Our investigations into galois theory culminated in being able to count em-
beddings of separable field extensions into splitting fields. This did not re-
quire any of the results of galois theory that we didn’t prove (e.g., the fun-
damental theorem of galois theory or its immediate precursors, such as the
independence of characters).

We’ll need the following result in several contexts.

Theorem 1. (Embedding Theorem) Let E be a separable extension of de-
gree n of a field F . Let K be an extension of E that is the splitting field
over F of a separable polynomial (with coefficients in F ). Then there are n
embeddings of E into K, i.e.,

|HomF (E,K)| = n.

Remark 2. The theorem was proved by generalizing to a “relative” version
that involved extending a given automorphism of ground fields, and then
proving the generalized theorem with an easy proof by induction.
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Remark 3. On several occasions we will number the embeddings σ1, · · · , σn;
it is customary to let σ1 be the identity map.

We will also be interested in the set HomQ(F,C) of field embeddings
of F into the complex numbers. We can, without loss of generality, assume
that F is contained in the complex numbers, and that a splitting field K
that contains it is also contained in the complex numbers. Then all of the
n = [F : Q] embeddings given in the above theorem take their image in K.

An embedding of a number field F into C is said to be real (resp.
complex) if its image is contained (resp., not contained) in the real num-
bers R ⊂ C. Complex embeddings come in pairs (if σ is an embedding so is
its complex conjugate x 7→ σ(x)). So if r1 is the number of real embeddings
and r2 is the number of complex conjugate pairs of embeddings then

r1 + 2r2 = n.

Example 4. Suppose F = Q(α). (We will soon see that any number field
is of this form.) Any embedding takes α to a root of mα,Q. Indeed, we apply
σ to

0 = mα,Q(α) = αn + a1α
n−1 + · · · , ai ∈ Q

we see that σ(α) is a root of the same polynomial. So r1 is the number of
real roots of mα and r2 is the number of pairs of complex conjugate roots.
Therefore

• The field F = Q( 3
√

2) has r1 = 1, r2 = 1 since x3 − 2 = 0 has one real
root and a pair of complex conjugate roots.

• The polynomial

(x− cos 2π/7)(x− cos 4π/7)(x− cos 6π/7) = x3 +
1

2
x2 − 1

2
x− 1
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has three real roots, so its root field has r1 = 3, r2 = 0.

0.4 Primitive Element Theorem

In several circumstances it can be useful to know that in any number field
F there is an element α that generates the field, i.e., F = Q(α). This turns
out to be any easy application of the emedding theorem.
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Theorem 5. Primitive Element Theorem. If E is a finite separable
extension of a field F then there is an element α of E such that E = F (α).

Proof. If E is finite, then it suffices to take α to be a generator of the cyclic
group E∗. So from now on we can assume that E is infinite.

By induction on the number of generators, it suffices to find a single
generator for a field E = F (α, β). Let n := [E : F ], and let σ1, · · · , σn be
the embeddings of E into a normal extension K of F that contains E. For
λ in F , let

g(x) :=
∏
i<j

σi(α) + xσi(β)− σj(α)− xσj(β).

Note that all factors are nonzero, since the embeddings are distinct, and
are determined by what they do to α and β. In addition, the coefficients are
all in F , since they are symmetric functions of the conjugates of α and β.

Thus the polynomial g is a nonzero polynomial with coefficients in F , and
there is a λ ∈ F such that g(λ) 6= 0. (Over a finite field it is in fact possible
for a nonzero polynomial to have all of its values equal to 0.)

Let γ = α+ λβ. Then each σi(γ) is a root of g, and they are all distinct,
so the degree of F (γ) over F is at least n. Since F (γ) is contained in the
field F (α, β) of degree n, it follows that the degree of γ is exactly n, and

F (α, β) = F (γ)

which finishes the proof.

0.5 Traces and Norms

If E/F is a finite extension of fields, then for every element x ∈ E we get a
“multiplication by x” mapping from E to E that is an endomorphism of an
F -vector space of dimension n := [E : F ].

We define the norm and trace of the element x, from E down to F , to
be the determinant and trace of this endomorphism; let mulx denote the
multiplication by x map, so that

NE/F (x) := det(mulx), T rE/F (x) := Tr(mulx).

We will run into the trace and norm again and again, and will need the
following basic results (to be proved next time).
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Theorem 6. Let x and y range over elements of F . Then:

• NE/F (x) ∈ F , TrE/F (x) ∈ F

• NE/F (xy) = NE/F (x)NE/F (y), TrE/F (x+ y) = TrE/F (x)TrE/F (y).

•
NE/F (x) =

∏
σ

σ(x), T rE/F (x) =
∑
σ

σ(x)

where the sum and product range over all embeddings of E into a
splitting field K of E over F .


