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Math 432 Class Lecture Notes

• Number Fields

• Examples

• Algebraic integers

0.1 Number Fields

The simplest field of characteristic 0 is of course the field Q of rational
numbers. Perhaps the next object of study should be finite extensions of this
field; in fact this turns out to be an extraordinarily fertile area of study, full
of many open problems. The rest of the course will be concerned with such
fields.

Definition 1. A number field is a finite extension of Q.

A later exercise will show that every number field is generated by a single
element, i.e., is a root field of an irreducible polynomial. If F = Q(α) is
a number field then the minimal polynomial mα(x) factors as a product of
distinct linear factors in its splitting field. If one desires, one can take the
roots to be complex roots, so that the splitting field, and the number field,
lie inside the complex numbers. We then let

• r be the number of real roots of mα, and

• s be the number of pairs of complex conjugate roots.
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Thus

r + 2s = n := deg(f).

The number of embeddings of F into C is clearly n, i.e., there is an embedding
for each choice of root.

It is largely a matter of taste as to whether one thinks of number fields as
lying explicitly inside the complex numbers, but there is no loss of generality
in doing this, and we will do so when it is convenient.

0.2 Examples

The simplest number field is of course the field of rational numbers.

The fields

Q(i), Q(
√
−3) = Q(ω), Q(

√
5)

are all examples of quadratic number fields, and by earlier remarks we know
that any such field is of the form Q(

√
d) where d is a rational number that

is not a perfect square.

A quadratic field Q(
√
d) is said to be real if d > 0 and imaginary if

d < 0. These correspond to r = 2, s = 0 and r = 0, s = 1 respectively.
Any quadratic field is a galois extension, and we will denote the nontrivial
automorphism, which takes

√
d to −

√
d by x 7→ x′.

The fields

Q(
3
√

2), Q[x]/(x3 + x2 − 2x− 1

are “cubic” number fields of degree 3 over Q. In this case r = s = 1 or
r = 3, s = 1 according to whether a defining polynomial has 1 or 3 real roots.
A cubic field might or might not be galois.

A “cyclotomic” field Q(e2πi/n) obtained by adjoining a primitive n-th root
of unity. Cyclotomic fields turn out to be galois extensions, since Q(e2πi/n)
is the splitting field of xn − 1. Later we will learn that the “cyclotomic”
polynomial

fn(x) :=
∏

gcd(k,n)=1

(x− e2πik/n)

is irreducible and is therefore the minimal polynomial of ζn := e2πi/n. Thus
the [Q(e2πi/n : Q] = φ(n), where φ(n) is the Euler-phi function, i.e., the
number of positive integers less than n that are relatively prime to n. By the
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basic lifting result, this means that for every such integer k there is a unique
automorphism σk such that

σk(ζn) = ζkn.

From the obvious fact that σkσl = σkl we see that the galois groupG(Q(ζn)/Q)
is isomorphic to the group multiplicative group (Z/nZ)∗.

A deep theorem due to Kronecker and Weber asserts that any galois
extension of Q whose galois group is abelian is contained in a cyclotomic
extension; this is one of the important theorems of “class field theory.”

0.3 Algebraic integers

To actually do algebraic number theory in a number field we need to go
beyond field theory and have “integers” ZF in a number field F , just as to
do usual number theory one works in the integers Z inside Q.

Definition 2. Let F be a number field. Define

ZF = {α ∈ F : mα(x) ∈ Z[x]} .

We call ZF the ring of algebraic integers in F .

One of our first tasks is to show that ZF is in fact a ring, i.e., that the
sum and product of algebraic integers are algebraic integers. It is convenient
to first develop a useful criterion for integrality.

Theorem 3. Let F be a number field and α ∈ F . Then the following are
equivalent.

1. α is an algebraic integer, i.e., mα(x) ∈ ZF .

2. The ring Z[α] has a finitely generated additive group.

3. α is contained in a subring with a finitely generated additive group.

4. There exists a finitely generated additive group L inside F such that
αL ⊂ L.
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Proof. If α is an algebraic integer then αn can be expressed, using the minimal
polynomial, as an integral linear combination of 1, α, α2, · · · , αn−1. By a
simple induction argument, all higher powers of α are in the span of those n
elements, and the additive group of Z[α is generated by those elements. This
proves that (1) implies (2).

(2) ⇒ (3) and (3) ⇒ (4) are obvious. Suppose that L is a finitely gen-
erated group inside F with the property that αL ⊂ L. Choose a basis
(generating set) β1, . . . , βn for L. We have:

αβi =
∑
j

aijβj.

We can write this in matrix notation as

α

 β1
...
βn

 =

 a11 · · · a1n
...

...
an1 · · · ann


 β1

...
βn

 .
Let A = (aij). It is now clear that α is an eigenvalue of this matrix, i.e.
det(αI−A) = 0. This implies that the minimal polynomial for α divides the
characteristic polynomial of A. Since the latter is a monic polynomial over Z,
Gauss’ lemma implies that mα(x) ∈ Z[x], and α is an algebraic integer.

Example 4. We determine the algebraic integers in an arbitrary quadratic
field. Let F = Q(

√
d), where we may assume that d is a squarefree inte-

ger. An arbitrary element of F can be written z = a + b
√
d. Its minimal

polynomial is then

mz(x) = x2 − 2ax+ (a2 − db2).

The integrality of the linear term implies that a has the form a = A
2
, where

A ∈ Z. The squarefreeness of d implies that b also has at worst a 2 in the
denominator, i.e., b = B

2
, for B ∈ Z. In order for a2 − db2 to be an integer it

follows that A and B have the same parity. We summarize these observations
as follows.

Theorem 5. Let d ∈ Z be a squarefree integer, and F = Q(
√
d). Then if

d ≡ 2, 3 (mod 4),
ZF = Z[d].

If, on the other hand, d ≡ 1, 4 (mod 4),

ZF = Z[
1 +
√
d

2
] = {A+B

√
d

2
: A ≡ B mod 2}.


