
September 12:

Math 432 Class Lecture Notes

• Finite fields

• Automorphisms of fields

• Separable Extensions

0.1 Finite fields

The proof of the cyclicity of F ∗ for finite F was finished — see the class notes
from September 10 for details. This enables us to answer several questions
about finite fields.

Suppose that F is a finite field. Then we know that the number of
elements in F is a power of a prime, say q = pn, so that [F : Fp] = n.

The multiplicative group F ∗ has order q − 1 so every nonzero element u
of F satisfies uq−1 = 1 and it follows that every element of F satisfies uq = u.
The polynomial xq − x has q roots in F , and therefore F is a splitting field
for this polynomial.

Since splitting fields exist are unique, we see that there is a finite field
with q elements and that it is unique up to isomorphism.

If u is a generator of the cyclic group F ∗ then F = Fp(u). The minimal
polynomial for u has degree n, and this proves that there is an irreducible
polynomial in Fp of degree n.

Remark 1. With a little more work, one can show that xq−x is the product
of all irreducible polynomials in Fp[x] whose degree divides n.
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Example 2. Over F2,

x4 − x = x4 + x = x(x+ 1)(x2 + x+ 1)

so there are two irreducible polynomials of degree 1 and one of degree 2.
Therefore the polynomial x16 must factor as

x16 + x = x(x+ 1)(x2 + x+ 1)f(x)g(x)h(x)

where f , g, and h are irreducible of degree 4. A little work shows that those
irreducible quartics are x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1.

0.2 Automorphisms of fields

If E is an extension of F define

AutF (E) := {σ : E → E | σ(x) = x∀x ∈ F}.

Example 3. If F = Q and E = Q(i) then

AutF (E) = {1, complex conjugation}.

Example 4. If F = Q and E = Q( 3
√

2) then Aut(E) = {1}. Indeed, any
automorphism maps a root of x3 − 2 to a root of the same polynomial, and
there is a unique root of that polynomial in E.

This is an instance of a general “lifting” result that comes up over and
over again.

Theorem 5. If φ:F → F ′ is an isomorphism of fields, f(x) ∈ F [x], E is a
root field of F , f ′ is the polynomial obtained by applying φ to each coefficient
of f , then any lifting of φ to a mapping from E to an extension field E ′ of F ′

must map α to a root of f ′. Thus there are at most deg(f) such extensions.

The proof of the theorem is immediate. If E = F (α), and

f(α) =
∑

aiα
i = 0

then applying an extension Φ to this equation gives∑
φ(ai)Φ(α)i = f ′(Φ(α)) = 0.

Thus the proof of the theorem is shorter than the statement.
(And, as seen in class, the diagram is even shorter.)
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0.3 Separable Extensions

From the above general fact, it is clear that the number of embeddings from
a root field F (α) into an extension E of F depends on how many roots the
minimal polynomial of α has in E. An important technical point comes up:
does the polynomial have distinct roots in its splitting field?

Definition 6. A polynomial f ∈ F [x] is separable if its roots are distinct
in its splitting field. An element of an extension field is separable over F if
its minimal polynomial is separable. An extension field is separable if and
only if all of its elements are separable.

In characteristic 0, or over finite fields, any irreducible polynomial, and
hence any element and any extension, is separable.

Theorem 7. If F is finite or has characteristic 0, then any irreducible poly-
nomial is separable.

If f has a multiple root then (x−α)2 divides f , and hence x−α divides f ′.
Thus f and f ′ have a common factor, which is impossible if f is irreducible
and the characteristic is 0 (so that the degree of f ′ is one less than the degree
of f). Conversely, any root α of the gcd of f and f ′ gives a double factor
of f .

Example 8. If F = Fp(t) is the field of rational functions r(t)/s(t) in an
indeterminate t, then the root α of the polynomial f(x) = xp − t in a root
field F (α) is not separable. Indeed, f is irreducible, and is therefore the
minimal polynomial of α, but

xp − t = (x− α)p

so that the root field is the splitting field, and the minimal polynomial has
repeated roots.

One shows that any inseparable polynomial in characteristic p has the
shape f(x) = g(xp), so that f ′ = 0. If the field is finite, where the Frobenius
automorphism is surjective, then g(xp) = h(x)p for a suitable h, so that if f
is inseparable then it is not irreducible.

An easy argument using the “lifting” principle in the preceding section
shows that if E is a splitting field over F then

#AutF (E) ≤ [E : F ] .
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With more work, one can show that this is also true for any finite extension
E/F of fields.

Definition 9. A finite extension E/F is a galois extension if equality holds,
i.e., if

#AutF (E) = [E : F ] .

By using the lifting theorem one can show that this holds if E is the
splitting field of a separable polynomial. A nontrivial result from galois
theory says that in fact any galois extension has the form.

Theorem 10. If E/F is a galois extension then E is the splitting field of a
separable polynomial f ∈ F [x].


