
September 10:

Math 432 Class Lecture Notes

• Power sums and elementary symmetric functions

• Cyclicity of finite subgroups of F ∗

0.1 Power sums and elementary symmetric

functions

The elementary symmetric functions of n indeterminates are defined by

n∏
i=1

(t− xi) =
n∑
j=0

(−1)jejt
n−j

and the power sums are defined by

pk :=
n∑
i=0

xki

where k is any nonnegative integer.
A homework question asked for a proof of the identity

k−1∑
j=0

(−1)jpk−jej + (−1)kkek = 0.

One approach is to find a relationship between the generating functions of
the e’s and p’s, since the only way that an identity of the above shape can
hold is if there is such a relationship.
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The generating function for the e’s can be written∑
j

(−1)jejt
j =

∏
i

(1− txi).

The generating function for the p’s can be found by summing a geometric
series: ∑

pkt
k =

∑
i,k

xki t
k =

∑
i

xit

1− xit
.

With some work one finds a relationship between these generating functions
(roughly, the second is the logarithmic derivative of the first) from which the
identity follows.

Another approach is to first handle the case k ≥ n. Substitute t = xi in
the defining identities for the e’s and multiply by xk−ni to get

n∑
j=0

(−1)jejx
k−j
i = 0.

Summing over i gives the desired identity (with a little careful thought as to
how to reconciel the two statements).

If k < n then the following curious argument works. Evaluate the LHS
of the identity (i.e., the function presumed to be 0). In this symmetric
function g(x1, · · · , xn) all monomials involve at most k different terms. If
this symmetric function is nonzero, then some monomial involving at most
the first k variables is nonzero, i.e.,

g(x1, · · · , xk, 0, · · · , 0) 6= 0.

However, this reduces to the case n = k of the identity, which we already
know to be true.

0.2 Cyclicity of finite subgroups of F ∗

Theorem 1. If G is a finite subgroup of the multiplicative group F ∗ of a
field then G is cyclic.

Corollary 2. If F is finite then F ∗ is cyclic, i.e., “primitive roots exist.”

As we discovered in class, the proof is simplified by using the following
result.



0.2. CYCLICITY OF FINITE SUBGROUPS OF F ∗ 3

Lemma 3. If x and y are elements of an abelian group and have relatively
prime orders, then the order of xy is the product of the orders of x and y.

Proof. Suppose x has order m, y has order n, and xy has order r. Since the
group is abelian

(xy)mn = xmnymn = 1

so the order of r divides mn. Also

1 = (xy)ra = yra

and the b divides ra. Since a and b are relatively prime, a divides r. Similarly,
b divides r.

Therefore ab divides r and r divides ab so r = ab as claimed.

Remark 4. We have used two facts from elementary number theory: Sup-
pose that u and v are relatively prime; then if u divides vw then u divides w;
if both u and v divides w then uv divides w.

Now we prove the theorem. Let G be a finite subgroup of the multiplica-
tive group F ∗ of a field F . Assume that the prime factorization of the order
of G is

#G := n =
∏
p
ai
i

.

For each i, the polynomial xn/pi − 1 can have at most n/pi roots. Since G

has n elements we can find an element ui such that u
n/pi
i 6= 1. The element

vi := u
n/p

ai
i

i has order paii . Indeed, it’s clear that vi raised to the paii is equal
to 1, so the order is a power of pi. But

v
p
ai−1
i
i = u

n/pi
i 6= 1

so the order is exactly equal to paii .
By successive applications of the Lemma we see that the product of the

vi has order n =
∏
paii , and the group is cyclic as claimed.


