
August 31:

Math 432 Class Lecture Notes

• Quotient rings

• Root fields

• Splitting fields

0.1 Quotient rings

Several questions have been raised, in class and in connection with the home-
work, that come down to how to interpret quotient rings. If R is a ring and I
is an ideal then the quotient ring R/I is the of equivalence classes in R under
the equivalence relation

x ∼ y if and only if x− y ∈ I.

Often these equivalence classes are most easily understood by choosing con-
venient or natural “representatives” from each equivalence class.

Example 1. It is often convenient to think of Z/nZ as the set

{0, 1, · · · , n− 1}

with addition and multiplication “modulo n” rather than a more unwieldy
set of n infinite sets. If x is any integer then there is a unique integer r so
that

x = qn+ r, 0 ≤ r < n

and this shows that every integer is in the equivalence class of a unique r,
0 ≤ r < n.
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Example 2. If f is a nonzero polynomial then F [x]/(f) is a set of equivalence
classes. The division algorithm

g = qf + r

shows that there is a unique element of each equivalence class whose degree
is less than n := deg(f) and it is customary to think of the quotient as the
set of all polynomials

a0 + a1x+ · · ·+ an−1x
n−1

of degree less than n with coefficients in F .

0.2 Root fields

If E is an extension of F and α is an element of E then last time we found a
minimal polynomial mα(x) that is monic, has α as a root, and is a divisor of
any polynomial that has α as a root. The polynomial mα is irreducible and

F (α) ' F [x]/mα.

Finally, the powers of α, αk, 0 ≤ k < n form a basis for the extension
F (α)/F .

Now suppose that we start with an irreducible polynomial f(x) and we
want to construct an extension field in which f has a root. This is easy!
Namely, the irreducibility of f implies that the quotient ring

F [x]/(f)

is actually a field, and the equivalence class containing x is a root of f ,
tautologically.

Definition 3. If f ∈ F [x] is irreducible then a root field for f is a field E
containing a root α of f such that E = F (α).

Theorem 4. Root fields exist, and they are unique, i.e. if E and E ′ are root
fields with roots α and α′, respectively, then there exists an isomorphism
φ : E → E ′ such that φ(α) = α′, and φ(x) = x for all x ∈ F .
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Indeed, suppose that E is a root field. Map F [x] to E by evaluating
polynomials at α. Since E = F (α) we see that

F [x]/(f) ' F (α) = E.

Since any root field is isomorphic to F [x]/(f) it follows that any two root
fields are isomorphic, and from the proof we see that there is an isomorphism
with the stated property.

Example 5. There are three root fields of f(x) = x3− 2 inside the complex
numbers. Namely, let

f(x) = x3 − 2 = (x− α1)(x− α2)(x− α3)

where α1 = 3
√

2 is the real cube root of 2, α2 = ωα1, α3 = ω2α1, where
ω = (−1 +

√
3i)/2 = exp(2πi/3) is a third root of unity. The field Q(α1) is

a subfield of the real numbers and is therefore not equal to either Q(α2) or
Q(α3), neither of which are contained in the real numbers.

This leaves open the possibility that Q(α2) and Q(α3) are the same field.
Any field containing both α2 and α3 would contain their quotient ω = α3/α2.
However, the minimal polynomial of ω is easily checked to be mω(x) = x2 +
x+ 1, so Q(ω) is of degree 2 over Q. The equation

3 = [Q(α2) : Q] = [Q(ω) : Q][Q(α2) : Q(ω)]

is nonsensical, and this contradiction shows that Q(α2) and Q(α3) are dis-
tinct.

0.3 Splitting fields

Definition 6. If f(x) is any nonzero polynomial in F [x], then an extension E
of F is said to be a splitting field of f over F if f(x) factors into linear factors
in E[x], and no proper subfield of E has this property.

Theorem 7. Splitting fields exist and are unique, up to isomorphism.

We’ll prove existence by induction on the degree, and leave uniqueness
(and some cool applications) until next time.

Let n = deg(f) be the degree of a polynomial f(x) ∈ F [x]. The case
n = 1 of the existence part of the theorem is trivial.
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Now suppose that all polynomials over any field with degree less then n
have splitting fields. Choose g(x) ∈ f [x], of positive degree, that divides f
and is irreducible over F . Let E be the root field of g, and let α be a root of
g in E.

Now, over E, f has at least one linear factor, namely f(x) = (x−α)f1(x)
for some f1 ∈ E[x]. Now deg(f1) < n so by the induction hypothesis, there
exists a splitting field of f1, call it E ′. Since f1 splits in E ′[x] it follows
that f splits into linear factors in E ′. The smallest field containing the roots
of f is a splitting field. (In fact, as checked in class, E ′ is the smallest field
containing the roots.)


