
August 29:

Math 432 Class Lecture Notes

• Fields, Characteristic, Prime Field

• Degree of a Field Extension

• Minimal Polynomials

• Lemma

0.1 The characteristic of a fields

A field is a set F together with two binary operations called addition and
multiplication (written with standard algebraic notation and conventions)
such that:

• Addition is commutative, associative, has an identity, and has inverses.

• Multiplication is commutative, associative, and has an identity; ele-
ments not equal to the additive identity have multiplicative inverses.

• The additive and multiplicative identities are distinct.

• Multiplication distributes over addition, i.e., x(y+ z) = xy+ xz for all
x, y, z ∈ F .
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The additive and multiplicative identities in a field F will usually be
denoted 0 and 1 respectively, though on occasion they will be denoted 0F
and 1F if it is useful to emphasize that they are in a specific field F .

Let F be a field. Then there is a canonical ring homomorphism h: Z→ F ,
basically defined by taking 1 to 1F . More precisely we define

h(n) = nF := 1F + · · ·+ 1F , (n times)

for nonnegative n (i.e., h(n) is defined by recursion) and take h(n) = −h(−n)
for n < 0.

There are two things that can happen. The kernel of h might be trivial.
By the isomorphism theorem “domain/kernel ' image” it follows that the
image is isomorphic to Z. Since F “contains” integers r and s it contains their
quotient r/s, and F contains (an isomorphic copy of) the rational numbers Q.
In this case the field is said to be of characteristic 0, written char(F ) = 0,
and the prime field of F , which is the smallest field contained in F , is Q.

On the other hand the kernel of h might be a nonzero ideal in Z. (An
ideal in a ring is a nonempty subset closed under addition, and multiplication
by arbitrary elements of the ring.) Any ideal in the ring of integers Z is
“principal”, i.e., the set of all multiples of a fixed integer:

(n) := nZ = {xn : x ∈ Z}.

(Any ring with this property is said to be a principal ideal domain, PID; the
proof that Z is a PID is given in an Appendix below.) If h(n) = 0 and n = rs
then

h(n) = h(r)h(s) = 0

and since F is a field we conclude that h(r) = 0 or h(s) = 0. It follows that
that ker(h) is of the form (p) where p is a prime.

By the aforementioned isomorphism theorem for ring maps, the image
of h is isomorphic to the domain modulo the kernel, i.e.,

im(Z) ' Z/pZ.

The image is (isomorphic to) the field Fp := Z/pZ with p elements. In this
case we say that F has characteristic p, written char(F ) = p, and that the
prime field of F is Fp.



0.2. THE DEGREE OF A FIELD EXTENSION 3

0.2 The degree of a field extension

Suppose that a field F is a subfield of a field E. We say that E is an
extension of F . If we restrict the multiplication map on E to multiplication
of elements of E by elements of F , then the resulting operation

×:F × E → E

gives E the structure of a vector space over F (where addition of “vectors” is
just the underlying field operation of addition on E; the vector space axioms
are immediate consequences of the field axioms on E).

The dimension of this vector space is the degree of the extension, written

[E : F ] := dimF (E).

An extension is finite if its degree is finite. In that case one can choose a
basis x1, · · · , xn consisting of elements of E such that every element of E has
a unique representation in the form

x = a1x1 + · · ·+ anxn

where the ai lie in the field F .

Example 1. The field C is an extension of the real numbers R. If we
forget how to multiply complex numbers by complex numbers, and merely
remember how to multiply complex numbers by real numbers, we get the
two-dimensional vector space R2; thus [C : R] = 2.

Example 2. If F is a finite field, then its prime field is Fp for some prime p,
and F is a finite-dimensional vector space over Fp. From the representation

x = a1x1 + · · ·+ anxn

we see that F has pn elements, where n = [E : F ], since each of the ai can
be chosen arbitrarily in Fp.

A direct proof (see homework!) shows that if E is an extension of F
and E ′ is an extension of F then

[E ′ : F ] = [E ′ : E][E : F ].
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0.3 Minimal polynomials

Let E be an extension of F , and let α be an element of E.
Then there is a natural ring homomorphism, h, from the ring F [x] of

polynomials with coefficients in F to the field E defined by being the identity
on F and taking the indeterminate x to α. Thus

h(f) = h(
∑

aix
i) =

∑
aih(x)i =

∑
aiα

i

and h is just the “evaluate at α map.
The kernel of h is an ideal in F [x]. The ring F [x] is a PID (see appendix

below). There are two cases.
If ker(h) = {0} is trivial, then α is said to be transcendental over F .

Example 3. By a highly nontrivial theorem, π is transcendental over Q and
[R : Q] is infinite. Similarly, e is transcendental over Q.

If, on the other hand, ker(f) is nontrivial then

im(f) ' F [x]/(f(x))

where the kernel of h is the principal ideal (f) of all multiples of a polyno-
mial f . The polynomial f can be chosen canonically if we require it to be
the unique element of the kernel that is monic (the coefficient of its high-
est degree term is 1); THEN f is said to the the minimal polynomial of α
over F , and we will write this polynomial as mα(x) ∈ F [x].

In this case α is said to be algebraic over F .
Moreover, in order for F [x]/(mα) to be a field, the minimal polynomialmα

has to be irreducible (analogous to the earlier proof that the kernel of the
map from Z to a field is generated by a prime).

It is easy to see that if n = deg(mα) then 1, α, α2, · · ·αn−1 is a basis for
im(h) over F . (Hint: given an element g(α) of im(h), divide mα into g(x) to
get a quotient and a remainder

g(x) = q(x)mα(x) + r(x)

and then evaluate at α.)
The smallest subfield of E that contains F and α is the set of all rational

functions f(α)/g(α), where g isn’t divisible by mα; this field is usually de-
noted F (α). However, by the remarks above on the basis of the field we see
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that the set of polynomials of degree less than n = deg(mα) is a field, and
we conclude that

F (α) =

{
f(α)

g(α)

}
= F [α] = {f(α) : deg(f) < n}.

Example 4. C = R(i) and mi(x) = x2 + 1.

Example 5. If F = F2 and mα(x) = x3 + x+ 1 then F2(α) is a field with 8
elements.

0.4 Appendix: Two lemmas

Lemma 6. Any ideal in Z is principal, i.e. an ideal I has the form

I = (n) = nZ

for some integer n.

Sketch of Proof: If I is nontrivial let n be its least positive element. Then
I contains the set of all multiples (n) of n. On the other hand, if x is any
element of I then by dividing x by n we get

x = qn+ r, 0 ≤ r < n.

then r = x− qn is in I. By the definition of n as the least positive element,
we have r = 0 and therefore x is in (n) as desired.

Lemma 7. Any ideal in F[x] is principal.

Sketch: If an ideal I is nontrivial then it contains an element f of least
possible degree. Divide f into an arbitrary element g of I

g = qf + r

and reason that I consists exactly of the multiples of f i.e., I = (f) as desired.


