
November 5:

Math 431 Class Lecture Notes

• Factoring primes

• Diophantine equations, continued

• Integer points on an elliptic curve

0.1 Factoring primes

Suppose F is a number field and let α ∈ F . Let p be a rational prime not
dividing [ZF : Z[α]]. Then a very useful theorem, stated last time, asserts
that the principal ideal generated by p factors as

(p) := pZF =
∏

P ei
i ,

where Pi = (p, fi(α)) and mα ≡
∏
f eii mod p. In addition, the residue class

degree of Pi is the degree of fi, and in fact, ZF/Pi = Fp[x]/(fi(x)).
We outline a proof of this result, mostly by reducing it to a sequence of

“elementary” algebra isomorphisms; the reader will have to draw on their
abstract algebra brain cells to verify the details.

The behavior of p i ZF is determined by the structure of the quotient
ZF/(p) where (p) denotes pZF . We start by showing that our hypothesis on
the index of Z[α] in ZF implies that this quotient is isomorphic to Z[α]/pZ[α].

The kernel of the map from Z[α]/pZ[α] to ZF/pZF is (pZF ∩Z[α])/pZ[α],
and the cokernel (the quotient of the domain by the image) is ZF/(pZF +
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Z[α]). In the language of abstract algebra, we have an exact sequence

0→ pZF ∩ Z[α]

pZ[α]
→ Z[α]

pZ[α]
→ ZF

pZF

→ ZF

pZF + Z[α]
→ 0.

Consider the following diagram of inclusions of abelian groups (in which all
upward arrows are inclusions).

ZF

↑
pZF + Z[α]

↗ ↖
pZF Z[α]

↖ ↗
pZF ∩ Z[α]

↑
pZ[α]

The index a := [ZF : pZF + Z[α]] is a divisor both of [ZF : pZF ], which has
order a power of p, and of [ZF : Z[α]], which is prime to p by assumption.
Therefore a = 1. Similarly the index b := [pZF ∩ Z[α] is a divisor of [pZF :
pZ[α]] = [ZF : Z[α] and of [Z[α] : pZ[α]] and we conclude that b = 1. Thus
the kernel and cokernel of the map φ are trivial, and the map from Z[α]/pZ[α]
to ZF/pZF is an isomorphism, as claimed.

With this in hand, we study the ring Z[α]/pZ[α]. There are natural
isomorphisms

Z[α]

pZ[α]
' Z[x]

(p, f(x))
' Fp[x]

f(x)
'
⊕ Fp[x]

f i(x)ei
.

The quotient Fp[x]/f
ei
i is a ring with a unique prime ideal, name the principal

ideal P ′i := (fi). By chasing back through the isomorphisms, one finds that
this corresponds to the prime ideal Pi = (p, fi(α)) in Z[α]. Since the prime
ideals in a direct sum of rings correspond to prime ideals in each summand,
we conclude that the Pi are the unique prime ideals in Z[α] that contain p.
Moreover, the quotient rings Z[α]/Pi are isomorphic to Fp[x]/f i(x) so that
the residue class degree of Pi is the degree of fi.

Moreover, in the quotient Fp[x]/f the product
∏

(P ′i )
ei vanishes. Chasing

back through the isomorphisms, we find that this means that in Z[α] the
product ∏

P ei
i
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contains the ideal pZ[α]. If pZ[α] =
∏
PEi
i then by the “

∑
eifi” theorem,

we have
n =

∑
ei deg(fi) ≥

∑
Ei deg(fi) = n

so equality holds throughout.
Putting all of this together gives us the desired result!

0.2 Diophantine equations, continued

Many applications of algebraic number theory to specific Diophantine equa-
tions start by factoring a homogeneous polynomial into two variables into a
product of linear forms, with coefficients in an algebraic number field. Typ-
ically, the other side of the equation is a perfect power, or a constant times
a perfect power.

For instance:

• The parametrization of all Pythagorean triples over Z, can be done by
carefully considering the factorization

(x+ iy)(x− iy) = z2,

in Z[i].

• The integral points of the elliptic curve y2 = x3 − 355 can be found by
factoring y2 + 355 and setting it equal to a perfect cube.

• All solutions to x2 + y2 = z3 can be found by factoring the LHS and
working in Z[i].

• As we will see shortly, the nonexistence of nontrivial solutions to x3 +
y3 = z3 can be proved by writing this as

(x+ y)(x+ ωy)(x+ ωy) = z3,

where ω = exp2πi/3, and then working in Z[α].

The problem of finding which numbers are values of a given homogeneous
polynomial sometimes succumbs to the same techniques. For instance, solu-
tions to the equation x2 + y2 = n boil down to the question of which integers
are norms of elements of Z[i]; the equation has solutions if and only if all
primes p | n, p ≡ 3 mod 4 have even exponents in the prime factorization of
n.
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0.3 Integer points on an elliptic curve

One of the famous open conjectures in number theory asserts that the rank
of an elliptic curve (the number of independent points of infinite order) is
equal to the order of vanishing at s = 1 of the L-series of the elliptic curve.
This conjecture is due to Bryan Birch and Peter Swinnerton-Dyer. Their
conjecture has led to an immense amount of research. It is somehow com-
forting that this conjecture was originally motivated by calculations on many
specific curves.

One of the most famous curves that Birch and Swinnerton-Dyer used was
the curve

y2 +m = x3.

As above, this leads naturally to consideration of the field Q(
√
−m) =: F .

To treat a simple general case, let’s suppose that −m ≡ 2 or 3 mod 4, that
m is positive and squarefree, and that 3 - hF .

The equation factors as (y +
√
−m)(y −

√
−m) = x3. Considering this

modulo 8 we see that x must be odd; also, (y,m) = 1, since if p | y, p | m,
then p | x; but then m is not squarefree.

The ideals y±
√
−m are relatively prime. If IJIK = x3 then y±

√
−m ∈

I ⇒ 2
√
−m, 2y ∈ I. (y,m) = 1 ⇒ (x,m) = 1. So we have (y +

√
−m) =

I3 = (a+ b
√
−m)3; moving to elements, y+

√
−m = (a+ b

√
−m)3, since we

can absorb the unit into a and b. Thus,

y +
√
−m = ±(a+ b

√
−m)3 (1)

= (a3 − 3ab2m) + (3a2b− b3m)
√
−m (2)

Now, (3a2 − b2m)b = 1⇒ b = ±1. So we have 3a2 −m = ±1 which implies
m = 3a2 ± 1. The conclusion is as follows.

Theorem 1. With the above assumptions on m, the equation

y2 +m = x3

has a solution if and only if m is of the form m = 3a2 ± 1, in which case we
must have x = (a2 +m)3, and y = a3 − 3am.


