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Math 431 Class Lecture Notes
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• Finding the ring of integers

• Finding the class number of a cubic field

0.2 The class number of Q( 3
√

6)

In discussing the infamous group quiz, it was determined that there was
a typo in the second problem, and the the problem on the class number
of Q( 3

√
6) should perhaps have included a hint about the ring of integers.

(Later, it was also revealed that the peaceful drunken rooks puzzle actually
was well-posed, and that the puzzle is available commercially.)

Let F = Q( 3
√

6). Then, for α = 3
√

6, mα = f , and f = x3 − 6, we know
that disc(f) = disc(1, α, α2) = [ZF : Z[α]]2 · DF . From the formula for the
discriminant of a cubic we also know disc(1, α, α2) = −27 · 62 = −35 · 22.

Therefore Z[α] is of index 1, 2, 3, 6, 9, 18 in ZF (all of the integers whose
square divides the discriminant). In fact, ZF = Z[α] but to prove this grace-
fully it is easiest to use results on algebraic integers.

0.3 Finding the ring of integers

Let R be a ring such that

Z[α] ⊂ R ⊂ ZF .
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The basic idea is to start with R = Z[α] and gradually enlarge R until
we (provably) have reached ZF . The tools needed to do this are loosely
summarized as follows.

Theorem 1. a) the primes of Z[α] are of the form P = (p, g(α)), where
g ∈ Fp[x] is irreducible and g | f mod p).

b) If P is a prime ideal in R then there is an x ∈ F −R such that xP ⊂ R.

c) The question of whether or not xP ⊂ P is true is independent of which
x is chosen in part b).

d) If xP ⊂ P then x is an algebraic integer, and R can be enlarged, and
the prime ideals can be recomputed.

e) If xP is not a subset of P , then we say that x is a “certificate of invert-
ibility” for P . If all prime ideals in R have certificates of invertibility
then R = ZF .

The only prime ideals that are not invertible are those lying over primes p
such that p2 divides the discriminant of α. Thus there are finitely many prime
ideals in play at any given time, and since the discriminant of R goes down
every time it is enlarged, the algorithm implicit in the above results clearly
terminates.

In the example of current we start with let R = Z[α], where α = 3
√

6.
Then we only have to worry about p = 2 and p = 3 and the only prime
ideals above those primes are P2 = (2, α) and P3 = (3, α). We want to find
certificates of invertibility for those ideals; if we fail then we can enlarge R.

Consider P2. We need 2x and αx to be in R. The former implies that
x = y/2, where y = A+Bα + Cα2. From

yα = 6C + Aα +Bα2

we see that x = α2/2 works just fine. Then xα = 3 /∈ P2 so x is a certificate
of invertibility of P2.

Similar arguments show that for P3 we can also use x = α2/3, and that
xP3 is not contained in P3. Thus P3 is invertible as well, and we conclude
that Z[α] = Z[ 3

√
6 is the full ring of integers ZF .
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0.4 Finding the class number of a cubic field

Now we can return to our regularly scheduled program of computing the
class group. We know that

N(α− x) = −f(x)

for integers x, and this enables us to compute a table of norms.

x x2 − 6 prime ideals
0 -6 = −2 · 3 P2P3

1 -5 = −5 P5

2 2 = 2 P2

3 21 = 3 · 7 P3P7

-1 -7 = −7 P ′7
-2 -14 = −2 · 7 P2P

′′
7

We can calculate the Minkowski bound to be

B =
n!

nn

(
4

π

)r2 √
|DF | =

6

33

(
4

π

)√
35 · 22 < 9

so we know that every element of the class group contains an ideal of norm
less than 9, and, in particular, that the class group is generated by prime
ideals of norm less than 9.

By the above table,

(7) = P7P
′
7P”7, (5) = P5Q5, (3) = P 3

3 , (2) = P 3
2 .

By the x = −1 table entry, we know that one of the P7’s is principal. Simi-
larly, we know that P2 and P5 are principal (by the x = 2 and x = 1 entries).
So, P3 is principal (by x = 0), and consequently, both of the other P7’s are
principal. Therefore, h = 1 and we have a PID.

Note that in fact, we did not have to use the result from the previous
section about the ring of integers. Namely, the norm calculations are valid
no matter what the ring of integers actually is; e.g., if an element has prime
norm then it generates a prime ideal of degree 1 in ZF ; finally, since we found
that the class number was 1, we didn’t have to prove that any ideals were
non-principal and didn’t need to fully calculate the “norm form.”

We also remark that the norm table could be used to find a nontrivial unit,
by finding a principal ideal that was trivial, as a principal ideal. A famous
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theorem due to Dirichlet that we will cover next week says that the units
of a number field F consist of roots of unity, together with s independent
elements, where s = r1 + r2 − 1, i.e.,

Z∗F ' U × Zs

where U is a finite group. For the cubic field above, r1 + r2 − 1 = 1 and
there is a “fundamental unit” of infinite order, much as in the case of real
quadratic fields.


