
October 8:

Math 432 Class Lecture Notes

• The discriminant of a field

• Power bases

• Ideals

0.1 The discriminant of a field

Last time we saw that a subgroup H of a fab G of finite rank n is itself a fab
of rank at most n. Moreover, if a basis of G is given, then there is a basis
of H such that the “change of basis matrix” is upper triangular. If the rank
of H is the same as the rank of G, then H is of finite index, and it can be
checked directly that the index is the (absolute value of the) product of the
diagonal entries.

Since any two bases of a fab of rank n are related by change of bases
matrices of determinant ±1, it follows that the index of H in G is the absolute
value of the determinant of any change of basis matrix.

Theorem 1. If F is a number field of rank n over Q then the ring of integers
ZF is a fab of rank n.

Proof. Choose a basis α1, · · · , αn of F over Q (i.e., a basis as a Q-vector
space). Without loss of generality, by multiplying by integers if necessary,
we can assume that each αi is an algebraic integer. If d = disc(α1, · · · , αn)
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then by earlier work we know that ZF is sandwiched in between two fabs of
rank n:

spanZ(α1, · · · , αn) ⊂ ZF ⊂ spanZ(α1/d, · · · , αn/d).

The result follows from our general results, recalled above, on fabs.

Definition 2. The discriminant of a number field F is defined to be the
discriminant of some (and hence any) basis of ZF .

(Recall that the discriminant of two bases of F over Q are related by the
square of the determinant of the change of basis matrix; since two basis of
ZF are related by a matrix of determinant ±1 it follows that the discriminant
as defined above is indeed well-defined.)

The problem of finding ZF is usually fairly easy in the case of textbook
examples that are intended to be done by hand. However, as an algorithmic
problem for “general number fields” it is difficult. It is known that this
problem is equivalent (in “polynomial time”) to the problem of finding the
largest square factor of an integer m.

Remark 3. Although the latter problem might be easier than the more
general problem of factoring integers, no one knows any way to find the
largest square factor that is any easier than factoring.

Remark 4. It is easy to see that the problem of finding an “integral basis”
is at least as hard as the problem of finding the largest square factor: If d
is an arbitrary integer, the problem of finding an integral basis in Q(

√
d) is

essentially the same as the problem of finding the largest square factor of d.
So the nontrivial direction is the other one: showing that if one can find
solve the largest square factor efficiently (i.e., in polynomial time) then the
integral basis can be found efficiently.

0.2 Power bases

One special case of some importance is when a “number ring” ZF has a basis
of the form

1, α, α2, · · · , αn−1.

Such bases are called “power bases,” and, as we will see, are particularly easy
to work with. In this case the discriminant of the field, i.e., the discriminant
of the above basis, is just the discriminant of the polynomial mα.



0.3. IDEALS 3

Whether or not an algebraic integer α generates a power basis, the span
of the powers of α is denoted Z[α], and this set is a subring of ZF . Subrings
of the ring of integers are sometimes called orders in ZF .

Note that any quadratic field has a power bases. In a future homework
assignment we will see that there are cubic fields with no power basis. The
cyclotomic fields Q(ζn), ζn := e2πi/n are very important, and it is convenient
that they have a power basis, and that in fact the ring of integers Z[ζn].
Unfortunately, it seems to be the case that large “random” number fields do
not have power bases.

By our earlier work on fabs, we know that for any algebraic integer α we
have

disc(mα) = disc(1, α, · · · , αn−1) = [ZF : Z[α]]2 disc(ZF ).

Thus we can compute the discriminant on the left explicitly as a polynomial
discriminant. To find the discriminant of the field we have to allocate factors
of the polynomial discriminant either to the square of the index or to the
discriminant of the field.

One crucial special case is:

Theorem 5. If disc(mα) is squarefree then ZF = Z[α].

Perhaps later we will return to the problem of actually finding ZF .

0.3 Ideals

As hinted earlier, factorization of ideals in ZF is unique. In fact, this is true
in much more general circumstances.

Definition 6. A ring R (commutative, with identity) is a Dedekind do-
main if

• Every ideal is finitely generated (i.e., R is Noetherian).

• Every prime ideal is maximal (i.e., R is “one-dimensional”).

• Every element of the fraction field F of R that satisfies a monic poly-
nomial with coefficients in R lies in R (i.e., R is integrally closed in F ,
i.e., R is “smooth”).
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Since the important theorems about ideals can be proved for Dedekind
domains, and number rings ZF are Dedekind domains, we will find it conve-
nient to work in that context (though there are one or two points where it
is slightly more convenient to work in the special case ZF ). To finish today,
we show that number rings are in fact Dedekind domains.

Theorem 7. If F is a number field, then its ring of integers ZF is a Dedekind
domain.

Proof. An ideal I is contained in ZF and is therefore a fab of finite rank,
and is hence finitely generated. So ZF satisfies the first condition for being
a Dedekind domain.

If I is an ideal then it contains n linearly independent elements over Q.
(Take a basis of ZF and multiply each element by a fixed nonzero element
of I.) Thus I is a fab of rank n and the quotient ZF/I is finite. If I is a
prime ideal then ZF is a finite integral domain.

Lemma 8. Any finite integral domain is a field.

Proof. (of lemma) The set of powers of a given nonzero element form a finite
set, so xm+n = xm for a nonnegative integer m and positive integer n. This
implies that xm(xn−1) = 0 and by the integral domain property we conclude
that xn = 1, i.e., that x is of finite multiplicative order and hence has an
inverse.

Thus if I is a prime ideal then ZF/I is a field, which is to say that I is
a maximal ideal. This proves the second condition for ZF to be a Dedekind
domain.

Finally, if an element x of F satisfies a monic polynomial with coefficients
in ZF then, as we saw earlier, x lies in a ring that is finitely generated over Z
and x is an algebraic integer. I.e., x ∈ ZF . So ZF is indeed integrally closed
in its fraction field, as claimed.


