
October 5:

Math 432 Class Lecture Notes

• Does ZF have a basis over Z?

• Free abelian groups

0.1 Does ZF have a basis over Z?

Let F be a number field of degree n over Q. Let α1, . . . , αn be a basis of
F over Q. By multiplying each αi by an integer, if necessary, we can assume
that each αi is in ZF , i.e., that each αi is an algebraic integer.

The set

spanZ(α1, · · · , αn) =

{
n∑
i=1

aiαi : ai ∈ Z for all i

}

of all integral linear combinations of the αi is a subgroup of (the additive
group of) ZF . In fact we can bound the distance between spanZ(αi) and ZF

in terms of the discriminant of the basis.

Theorem 1. Let α1, . . . , αn be a basis of F over Q, where each αi ∈ ZF ,
and let d = disc(α1, · · · , αn). Then for every α ∈ ZF

dα =
n∑
i=i

aiαi, ai ∈ Z,

i.e., when α is expressed as a linear combination of the basis elements the ra-
tional numbers that occur as coefficients have denominators that are divisors
of d.
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Proof. Let α be an element of ZF . Then we have

α =
n∑
i=i

biαi where b1, . . . , bn ∈ Q.

For each j, 1 ≤ j ≤ n, we have

α(j) =
n∑
i=i

biα
(j)
i

where the superscripts denote the images under the various embeddings. This
system of equalities can be written in matrix form as v = Mb, where

v =


α(1)

α(2)

...
α(n)

 , M =


. . . . . . . . . . . . .

α
(i)
1 · · · α(i)

n

. . . . . . . . . . . . .

. . . . . . . . . . . . .

 , and b =


b1

b2
...
bn

 .

Now we have MTv = MTMb, thus (MTM)−1MTv = b. Now we see that
MTM = [TrF/Q(αiαj)], and MTv = [TrF/Q(ααi)]. However,,

(MTM)−1 =
1

d
[(−1)i+j(MTM)ij]

where (MTM)ij is the ijth cofactor, and d = det(MTM) = disc(α1, . . . , αn).
Thus db is a matrix of integers, so

α =
n∑
i=i

ai
d
αi where a1, . . . , an ∈ Z.

Thus we see that ZF ⊂ spanZ (α1/d, · · · , αn/d) .

0.2 Free abelian groups

Definition 2. A finitely generated free abelian group, or fab for short, is a
finitely generated free Z-module. Equivalently, a fab is a finitely generated
torsion-free abelian group. The rank of a fab is its number of generators
(from results below, it follows immediately that any two generating sets have
the same number of elements).
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Example 3. The lattice {(0, 0)} inside Z2 has rank 0, and Z2 itself has
rank 2. The set {nv : n ∈ Z} of all multiples of a given nonzero vector
v ∈ Z2 forms a line of lattice points, and is a fab of rank 1.

Example 4. Any fab G of rank 2 in Z2 is of finite index, where the index is
the number of cosets, i.e., the order of the quotient group Z2/G.

• The fab consisting of vectors (x, y) where x+ y is even has index 2.

• The fab consisting of vectors (x, y) where both x and y are even has
index 4, and is sometimes denoted 2Z2.

• The fab G generated by (2, 1) and (0, 3) has coset representatives (i, j)
where 0 ≤ i < 2, 0 ≤ j < 3, as can be checked by showing that every
element of Z2 is congruent to one of them modulo G, and no two of
them are congruent modulo G‘

The key results that we will need about fab’s are that any subgroup H
of a fab G of rank n is itself a fab of rank m ≤ n, and if m = n then H has
finite index in G, and the index can be obtained by taking the absolute value
of the determinant of the change of basis matrix.

In class these proofs were done in the case n = 2; the arguments in the
general case are similar.

Theorem 5. If G is a fab with basis e1, · · · , en and H is a subgroup of G,
then H is a fab, and it has a basis fj, 1 ≤ j ≤ m such that the change of
basis matrix is upper triangular, i.e.,

fi =
∑
j≥i

aijej, aij ∈ Z.

In particular, the rank of H is less than or equal to the rank of G.

Proof. Without loss of generality we can take G = Zn, and the basis ei to
be the standard basis vectors. (This is exactly the picture we get by writing
elements g of G as linear combinations of the basis vectors, and mapping g
to the vector of coefficients.)

We prove the result by induction on n. The case n is trivial: any subgroup
of Z is an ideal and is therefore principal. So either H is {0} or else there is
a vector f1 such that H = Zf1 consists of all multiples of f1.



4

Let n > 1, assume that the result is true for all ranks smaller than n.
Consider the projection π of Zn onto its first n− 1 components. The kernel
consists of all multiples Zen of the last basis vector (i.e., all vectors whose
first n − 1 coefficients are 0). Let H ′ = π(H) be the image of H under this
map, and K = ker(π) ∩H. This information is summarized by a diagram

By our induction assumption, H ′ is a fab with rank at most n − 1 and
the change of basis matrix is upper triangular. Let f1, · · · , fk be elements
of H whose images under π are a basis of H ′. If K = {0} then H =
spanZ(f1, · · · , fk) and we are done. Otherwise, K is an ideal in Z, and we
let fk+1 be a generator. One checks that f1, · · · , fk+1 is the desired basis
of H.

Remark 6. The matrix interpretation of this result is that any matrix of
integers can be converted to upper triangular form by row operations over
the integers (i.e., division by an integer is not allowed).

Corollary 7. The ring ZF of algebraic integers in a number field F is a fab
of rank n.

Proof. If αi is an arbitrary basis of algebraic integers with discriminant d
then

spanZ(αi) ⊂ ZF ⊂ spanZ(αi/d)

and the corollary follows immediately, using the theorem.

If the rank of the subgroup H is equal to the rank n of G then one checks
that the set of vectors

n∑
i=1

ciei, 0 ≤ ci < |aii|

is a set of coset representatives for H in G. Thus H is of finite index in G,
and the index is equal to the product of the |aii|, i.e., the absolute value of
the determinant of the (upper triangular) change of basis matrix.

Theorem 8. If e1, · · · , en and e′1, · · · , e′n are two different basis of the fab G,
then the change of basis matrix A has the property that det(A) = ±.

Proof. Writing

e′i =
n∑
j=1

aijej, ei =
n∑
j=1

bije
′
j
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one finds by substitution of one set of equations into the other that AB =
BA = In. Thus det(A) det(B) = 1, and since the matrix entries, and the
determinants of the matrices, are integers it follows that both determinants
are equal to ±1.

Corollary 9. If G is a fab of rank n, and H is a subgroup of rank n then
the index of H in G is the absolute value of the determinant of a change of
basis matrix.

Proof. The earlier theorem said that this was true for a specific change of
basis matrix A. Changing the basis for H changes the change-of-basis ma-
trix A my multiplying it on the left by a matrix M that is the change-of-basis
matrix between the two bases of H. By the preceding theorem, det(M) = ±1
and therefore

| det(MA)| = | det(A)| = [G : H]

as claimed.


