October 29:

Math 431 Class Lecture Notes

e Finiteness of the class group
e Computing a class group

e The Minkowski bound

0.1 Finiteness of the class group

The Minkowski bound says that every ideal I in a number ring Z contains
an element « such that

IN(a)| < CpN(I)

where C'r depends only on the signature (r1,73), degree n, and discriminant
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It is an interesting exercise to show that
N(I) = ged({|N(a)] :a € T}).

Thus the term Cry/|Dp| measures how far off we can be in comparing N (1)
with the smallest possible N(a), for a € I. If the class group is trivial then
of course one can find o with |N(«)| = N(I). Thus it is plausible that this
result says something about the class group.

Theorem 1. The class group CI(F') of a number field is finite.



Proof. We show that any class contains an ideal of norm at most C'r. To see
this, let I be an ideal in Zp, and denote its class by [I]. Then [ is invertible so
there is an ideal I’ such that 1" = () for some (3. Now apply the Minkowski
bound to I’ to obtain an element « such that

IN(a)| < Cp - N(I).

Since () C I', (o) = I' J for some J. This implies that I(«) = [1'J = (5)J.
Thus I and J are in the same ideal class. However
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There are finitely many rational primes less than N(.J), and hence finitely
many prime ideals P in Zp of norm less than a given bound, and hence
finitely many ideals of norm less than Cr \/ﬁ . Since every ideal class has a
representative in a finite set, the ideal class group is finite. O

0.2 Computing a class group

Let = Q(v/—15). Then we know that Zr = Z[0] where § = (14++/—15)/2,
Dy = —15, and N(x + yd) = 2® + xy + 4y?. From the proof of the finiteness
of the class number using the Minkowski bound we know that every ideal
class contains an ideal of norm at most

2!<j;)\/1>5<4.
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It turns out that class groups can be computed by computing sufficiently
many norms, and then drawing suitable inferences!

So we start by computing N(z + 6) = 22 + x + 4 for 0 < z < 12. (Since
N(—z 4+ 9) = N(z — 1 — ) it is unnecessary to compute this function for
negative x.)



0.2. COMPUTING A CLASS GROUP 3

2| 2®+ax+4] (x+9)]
0 1= P2
1 6=2.3| PP,
2 10=2-5 PPy
3 16 =2 P
1| 2%-=25.3| Pip
51 3d=2.17| PP,
6 46 =2 - 23 Py Pog
7| 60=22-3-5| PPPDs
8 74 =237 PP,
9 01-47 | PPy
10 114=2-3-19 | PL,P3Pyy
11| 119=2°.17| PPP.
12 160 = 2°-5 Py Ps

After computing the norm we factor the resulting integer; the idea is that
this gives us lots of information about the factorization of the principal ideal
(x + ) into prime ideals.

For instance, the factorization N(2 4+ 0) = 6 = 2 - 3 tells us that the
factorization of the principal ideal (2 + ¢) must involve a prime ideal of
norm 2 and a prime ideal of norm 3.

If P is a prime ideal of degree 1 lying over a rational prime p, then
the residue field Zg/P is equal to Z/pZ, and ¢ is congruent to an integer
modulo P. If § = a mod P then N(a — §) is divisible by p. Thus any prime
of degree 1 “occurs” sooner or later in the factorization table above.

On the other hand, § mod P generates Zp/P as an extension of Z/pZ,
so if 6 = a mod P then this extension is of degree 1. Thus a rational prime
occurs in a factorization of (z 4 0) if and only if the corresponding prime
ideal is of degree 1.

(Warning: this relies on the fact that the ring of integers has a power
basis, i.e., that Zr = Z[d], so in fields of higher degree this sort of argument
might not hold for primes dividing the index of Z[a] in Zp.)

Next, we note that a prime ideal P occurs in the factorization of (x + ¢)
and (2’ 4 9) if and only if z = 2’ mod p. Indeed, if x+6 € P and 2’ +6 € P
then

r+d0—2 —d=x—2" € PNZ=(p).

These remarks enables us to make many inferences from the table of



norms. First, 2 splits, 3 and 5 are ramified, and 7 is inert. Next, we can
factor each principal ideal into prime ideals as indicated.

What do the factorizations tell us about the class group? From the equa-
tions

(2) = PPy, (3) =P, (5) =P}

we see that the primes P, and Pj are inverses in the class group, and that
the classes of Py and Ps have order 2. From the factorization (1+9) = PP,
(2+ 0) = P,Ps we see that P, and P, have order 2 (so that [P] = [Pj] and
that [Ps] = [P] = [P5]. In fact, the only class groups that are consistent with
all of the above information are: the trivial group (every ideal is principal),
or the group of order 2, in which, for instance, [P] is the nontrivial element.

Morally speaking, we are sure that the latter is probably true. To verify
this, it suffices to show that P is nontrivial. If P, were principal, say P, =
(x + y0), then there would be an element of order 2:

N(z+yd) = 2> +ay +4y*> = N(R,) = 2.

This equation is unsolvable in integers z, y (e.g., implies (2z+y)?+15y? = 8).
So we conclude that CI(F) is of order 2.



