
October 29:

Math 431 Class Lecture Notes
• Finiteness of the class group

• Computing a class group

• The Minkowski bound

0.1 Finiteness of the class group

The Minkowski bound says that every ideal I in a number ring ZF contains
an element α such that

|N(α)| ≤ CFN(I)

where CF depends only on the signature (r1, r2), degree n, and discriminant
DF of F :

CF =
n!
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It is an interesting exercise to show that

N(I) = gcd({|N(α)| : α ∈ I}).

Thus the term CF
√
|DF | measures how far off we can be in comparing N(I)

with the smallest possible N(α), for α ∈ I. If the class group is trivial then
of course one can find α with |N(α)| = N(I). Thus it is plausible that this
result says something about the class group.

Theorem 1. The class group Cl(F ) of a number field is finite.
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Proof. We show that any class contains an ideal of norm at most CF . To see
this, let I be an ideal in ZF , and denote its class by [I]. Then I is invertible so
there is an ideal I ′ such that II ′ = (β) for some β. Now apply the Minkowski
bound to I ′ to obtain an element α such that

|N(α)| ≤ CF ·N(I).

Since (α) ⊂ I ′, (α) = I ′J for some J . This implies that I(α) = II ′J = (β)J .
Thus I and J are in the same ideal class. However

N(J) =
N((α))

N(I ′)
=
|N(α)|
N(I ′)

≤ CF .

There are finitely many rational primes less than N(J), and hence finitely
many prime ideals P in ZF of norm less than a given bound, and hence

finitely many ideals of norm less than CF
√
|D|. Since every ideal class has a

representative in a finite set, the ideal class group is finite.

0.2 Computing a class group

Let F = Q(
√
−15). Then we know that ZF = Z[δ] where δ = (1 +

√
−15)/2,

DF = −15, and N(x+ yδ) = x2 + xy + 4y2. From the proof of the finiteness
of the class number using the Minkowski bound we know that every ideal
class contains an ideal of norm at most

2!
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It turns out that class groups can be computed by computing sufficiently
many norms, and then drawing suitable inferences!

So we start by computing N(x + δ) = x2 + x + 4 for 0 ≤ x < 12. (Since
N(−x + δ) = N(x − 1 − δ) it is unnecessary to compute this function for
negative x.)
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x x2 + x+ 4 (x+ δ)

0 4 = 22 P 2
2

1 6 = 2 · 3 P ′2P3

2 10 = 2 · 5 P2P5

3 16 = 24 P ′42

4 24 = 23 · 3 P 3
2P3

5 34 = 2 · 17 P ′2P17

6 46 = 2 · 23 P2P23

7 60 = 22 · 3 · 5 P ′22 P3P5

8 74 = 2 · 37 P2P37

9 94 · 47 P ′2P47

10 114 = 2 · 3 · 19 P2P3P19

11 119 = 23 · 17 P ′32 P
′
17

12 160 = 25 · 5 P 5
2P5

After computing the norm we factor the resulting integer; the idea is that
this gives us lots of information about the factorization of the principal ideal
(x+ δ) into prime ideals.

For instance, the factorization N(2 + δ) = 6 = 2 · 3 tells us that the
factorization of the principal ideal (2 + δ) must involve a prime ideal of
norm 2 and a prime ideal of norm 3.

If P is a prime ideal of degree 1 lying over a rational prime p, then
the residue field ZF/P is equal to Z/pZ, and δ is congruent to an integer
modulo P . If δ ≡ a mod P then N(a− δ) is divisible by p. Thus any prime
of degree 1 “occurs” sooner or later in the factorization table above.

On the other hand, δ mod P generates ZF/P as an extension of Z/pZ,
so if δ ≡ a mod P then this extension is of degree 1. Thus a rational prime
occurs in a factorization of (x + δ) if and only if the corresponding prime
ideal is of degree 1.

(Warning: this relies on the fact that the ring of integers has a power
basis, i.e., that ZF = Z[δ], so in fields of higher degree this sort of argument
might not hold for primes dividing the index of Z[α] in ZF .)

Next, we note that a prime ideal P occurs in the factorization of (x+ δ)
and (x′ + δ) if and only if x ≡ x′ mod p. Indeed, if x+ δ ∈ P and x′ + δ ∈ P
then

x+ δ − x′ − δ = x− x′ ∈ P ∩ Z = (p).

These remarks enables us to make many inferences from the table of
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norms. First, 2 splits, 3 and 5 are ramified, and 7 is inert. Next, we can
factor each principal ideal into prime ideals as indicated.

What do the factorizations tell us about the class group? From the equa-
tions

(2) = P2P
′
2, (3) = P 2

3 , (5) = P 2
5

we see that the primes P2 and P ′2 are inverses in the class group, and that
the classes of P3 and P5 have order 2. From the factorization (1 + δ) = P ′2P3,
(2 + δ) = P2P5 we see that P2 and P ′2 have order 2 (so that [P2] = [P ′2] and
that [P3] = [P2] = [P5]. In fact, the only class groups that are consistent with
all of the above information are: the trivial group (every ideal is principal),
or the group of order 2, in which, for instance, [P2] is the nontrivial element.

Morally speaking, we are sure that the latter is probably true. To verify
this, it suffices to show that P2 is nontrivial. If P2 were principal, say P2 =
(x+ yδ), then there would be an element of order 2:

N(x+ yδ) = x2 + xy + 4y2 = N(P2) = 2.

This equation is unsolvable in integers x, y (e.g., implies (2x+y)2+15y2 = 8).
So we conclude that Cl(F ) is of order 2.


