
October 26:

Math 431 Class Lecture Notes
• The norm of an ideal

• Decomposition of primes

• The Minkowski bound

0.1 The norm of an ideal

If mulα is the “multiplication by α” map on a number field F that contains α,
then its determinant is, by definition, the norm of α down to Q. In addition,
the absolute value of the determinant is equal to the index of the ideal (α)
in ZF . Indeed, if αi is a basis of ZF then ααi is a basis for (α), and the
matrix for mulα is the same as the change of basis matrix.

We extend this idea to arbitrary ideals, by defining the norm of an ideal
to be its index.

Definition 1. If I is an ideal in a number ring ZF then its norm is defined
to be

N(I) = [ZF : I].

The remarks above show that the norm of a principal ideal is (the absolute
value of) the norm of the generator:

N((α)) = |N(α)| .

The only other crucial property of the norm that we will need is that it
is multiplicative, and this will require a little work.

1



2

Theorem 2. If I and J are ideals in ZF then

N(IJ) = N(I)N(J).

Proof. From the Chinese Remainder Theorem, if I =
∏
P ai
i then ZF/I =⊕

ZF/P
ai
i . Thus

N(I) =
∏
N(P ai

i ).

So the only fact that is needed to finish the proof of the theorem is that for
any prime ideal

N(P a) = N(P )a.

Consider the decreasing sequence of ideals

ZF ⊃ P ⊃ P 2 ⊃ · · · ⊃ P a.

We claim that each quotient P k/P k+1 is of order N(P ) = [ZF : P ]. First
we note that P k/P k+1 is a vector space over the reside field ZF/I; indeed if
x ∈ P k and [a] ∈ ZF/I then [ax] is a well-defined element of P k/P k+1 that
depends only on the class of x mod P k+1 and the class of a in ZF/I. The
vector space axioms are easy to verify.

So all that we have to show is that the quotient P k/P k+1 is a 1-dimensional
ZF/P vector space. To this end, pick any u ∈ P k − P k+1. Therefore,

(u) = PKJ

for some ideal J . Then

(u) + P k+1 = gcd((u), P k+1) = PK .

Thus the ZF multiples of u cover P k/P k+1 and the theorem is finally proven.

0.2 Decomposition of primes

If P is a prime ideal in a number ring ZF then P contains a unique rational
prime p. The field ZF/P is called the residue class field of P and is sometimes
denoted kP . A little thought shows that ZF/P is an extension of the field
Fp = Z/pZ.
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Definition 3. The residue class degree of a prime ideal P , sometimes
denoted fP , is defined to be

fP := [ZF/P : Fp] .

Thus
|kP | = pfP .

Theorem 4. If F is a number field of degree n, p is a rational prime, and
the factorization of (p) into prime ideals in ZF is∏

P ei
i

then ∑
eifi = n

where fi is the residue class degree of the prime Pi.

From now on, we will often say “the factorization of p” when “the factor-
ization of (p) := pZF into prime ideals” is meant.

Proof. By multiplicativity of the norm, if

(p) =
∏
P ei
i

then
N(p) = pn =

∏
i

N(Pi))
ei = p

∑
eifi

and the result follows by the definition of the norm.

Definition 5. If (p) =
∏
P ei
i then the exponent ei is called the ramification

index of the prime Pi. The prime p is said to be ramified in K/Q if some
exponent ei is larger than 1.

It turns out that only finitely many primes can be ramified.

Theorem 6. The prime p is ramified in F if and only if p divides the dis-
criminant.

The proof of this theorem is somewhat difficult (though one direction is
easier than the other), and will be deferred to when (and if) we return to the
constructive aspects of the problem of finding ZF .
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Example 7. The discriminant of f(x) = x3 + x + 1 is −31. Therefore if α
is a root of f and F = Q(α) then ZF = Z[α]. By the above theorem, 31 is
the only ramified prime and it can be verified that

(31) = P 2Q

where P = (31, α− 14), Q = (31, α− 3).
In a cubic field there are two possible factorizations for ramified primes

(p) = P 2Q, (p) = P 3

where all primes are of residue class degree 1. There are three possible
factorizations of unramified primes

(p) = P1P2P3, (p) = PQ, (p) = R

corresponding to the three different partitions of 3.

Example 8. In Z[i] there are three types of primes:

(2) = P 2, P = (1 + i), eP = 2, fP = 1

(p) = PP ′, P = (a+ bi), eP = fP = 1

(p) = Q, eQ = 1, fQ = 2

In favorable circumstances (true in any event for all but finitely many
primes) the decomposition of a rational prime p in Q(α) can be detected
from the factorization of mα modulo p.

Theorem 9. Suppose that F = Q(α) is a number field, where α is an
algebraic integer. If p is a rational prime and the index [ZF : Z[α]] is prime
to p, then the factorization of the ideal (p) exactly mirrors the factorization
of the polynomial mα modulo p. More precisely. if

mα ≡
∏
f eii mod p

where the fi are distinct monic irreducible polynomials in Fp[x] then

(p) =
∏
P ei
i

where Pi = (p, fi(α)) are prime ideals of residue class degree deg(fi).

This will be proved next time.
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0.3 The Minkowski Bound

Later we will prove the following result, using the geometry of numbers.

Theorem 10. (Minkowski Bound) Let F be a number field with discriminant
DF and degree n over Q. Then every ideal I in ZF contains an element α
such that

|N(α)| ≤ n!

nn

(
4

π

)r2 √
|DF |N(I).

The idea of the proof is to embed the integers ZF into Rn as a lattice, and
use the fact that every sufficiently large sphere has two contain two points
of a lattice.

Recall the the ideal class group Cl(F ) is the set of equivalence classes of
ideals under the relation I ∼ J when there are elements α and β of ZF such
that

αI = βJ.

Alternatively, the ideal class group can be more simply described as the
quotient

fractional ideals

principal fractional ideals

where a fractional ideal is a ZF submodule of F of rank n. One shows that
fractional ideals can be represented in the form∏

P ai
i

where the exponents are arbitrary integers (positive, zero, or negative). And
the “principal ideals” in the denominator refer to principal ideals of elements
of F . (If x is in F , then x = a/b where a, b ∈ ZF , and (x) = (a)(b)−1.)

The most important theorem about the class group is that it is finite.

Theorem 11. ClF is finite.

In addition, the group is trivial if and only if the ring of integers is a PID,
which is in turn equivalent to being a UFD.

Theorem 12. The following are equivalent:

• The group Cl(F ) is trivial.

• ZF is a PID.

• ZF is a UFD.


