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Math 432 Class Lecture Notes

• Ideal lemmas

• Invertible ideals

• Main Theorems

0.1 Ideal lemmas

The main goal today is to prove that every ideal in a Dedekind domain is
invertible, that ideals factor uniquely into prime ideals, and that the ideal
“classes” form a group. The main lines of the proof here are due to van der
Waerden.

We start with two lemmas. Throughout let R be a Dedekind domain and
F its fraction field. (There are some minor ways in which the proof could be
simplified if R = ZF for some number field F .) Also, in one-dimensional rings
we will follow convention and reserve the word “ideal” for nonzero ideals.

Lemma 1. Any ideal contains a product of prime ideals.

Proof. The set of ideals not containing such a product has a maximal element
under inclusion, since R is Noetherian. Let I be such an ideal, i.e., an ideal
such that any ideal that properly contains I also contains a producdt of prime
ideals.

Then I isn’t a prime ideal itself, so there are elements x and y of R such
that xy ∈ i but x and y are not in I. Then I + (x) is an ideal that is strictly
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larger than I, so it contains a product
∏
Pi of prime ideals, and similarly

I + (y) contains a product
∏
Qj of prime ideals. But then

I ⊃ (I + (x))(I + (y)) ⊃
∏
i

Pi
∏
j

Qj

so that I in fact contains a product of prime ideals.

If I is an ideal, then an element x of the fraction field F is said to be
a multiplier for I if xI ⊂ R, i.e., x multiplies anything in I into R. Very
roughly, this means that the denominator of x is an element of I.

Lemma 2. Any proper ideal (i.e., not equal too the entire ring) has a mul-
tiplier that is not in the ring.

Proof. Let I be a proper ideal, and choose a nonzero element y in I. The
ideal (y) contains a product

∏m
i=1 Pi of prime ideals by the previous lemma;

we choose such a product in which the number m of ideals is as small as
possible. Also, choose a prime ideal P that contains I, so that we have

P ⊂ I ⊂ (y) ⊂
m∏
i=1

Pi.

Then P = Pi for some i (if not, then for each i choose xi in Pi by not in P ;
one finds that the product of the xi, and hence one of the xi, is in P since P
is a prime ideal). Let P = P1, without loss of generality.

Now choose z that is in the product P2 · · ·Pm that is not in (y) (z exists
because of the minimality of m).

Then the claim is that x = z/y is a multiplier for I; note that x is clearly
not in R since z is not in the principal ideal (y).

On the other hand

xI = (z/y)I ⊂ (z/y)P ⊂ (1/y)P1P2 · · ·Pm ⊂ R

by our various choices.

0.2 Invertible ideals

An ideal I in R is said to be invertible if there is an ideal J such that IJ
is principal. Any ideal in a Dedekind domain is invertible and, though we
won’t prove it, any one-dimensional integral domain with this property is in
fact a Dedekind domain.
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Theorem 3. If I is an ideal in R and y is a nonzero element of I, then the
set

J := {x ∈ R : xI ⊂ (y)}
is an ideal, and IJ = (y).

Proof. It is easy to check that J is an ideal, and that IJ is contained in (y).
So it suffices to check that IJ = (y). In order to do this, let

K = (1/y)IJ.

The set K is contained in R by our definitions, and it is then easy to check
that it is an ideal. We are trying to prove that K = R.

Suppose that K is a proper ideal. Let x be a multiplier for K that does
not lie in R.

First note that J ⊂ K. Indeed, y ∈ I so yJ ⊂ IJ and therefore J ⊂
(1/y)IJ .

Next, note that since xK ⊂ R we have

xIJ ⊂ (y).

This means that anything in xJ (which, by the first remark is a subset of R)
multiplies I into (y), i.e.,, that xJ is contained in J .

This is actually a contradiction since it implies that x is the root of
a monic polynomial with coefficients in R, i.e., that (by the definition of
a Dedekind domain) x is in R. Indeed, if α1, · · · , αk is a generating set
for J , then each xαi can be written as a linear combination of the αi, with
coefficients in R. In matrix form this gives

xA = MA, (xI −M)A = 0

where A the column vector of αi’s. A singular matrix has zero determinant,
so det(xI − M) = 0 and x is the root of a monic polynomial in R[x], as
claimed.

0.3 The Main Theorems

Finally, we are in a position to smoothly prove the major results about ideals
in Dedekind domains.
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Theorem 4. If I and J are ideals in R then I ⊂ J if and only if I is divisible
by J .

Remark 5. A smaller ideal will be divisible by more primes, so the statement
is in fact not counterintuitive.

Proof. If I = JK then anything in J is certainly in I (this implication is of
course true in any ring).

On the other hand, if I ⊂ J then find an ideal K such that JK = (y) is
principal. Then I ′ := (1/y)IK is easily checked to be an ideal and

I ′J = (1/y)IKJ = I.

So I is indeed the product of J and another ideal, i.e., I is divisible by J as
claimed.

Theorem 6. Cancellation holds for multiplication of ideals in a Dedekind
domain, i.e., IJ = IK implies that J = K.

Proof. Find an ideal I ′ such that II ′ = (y). Multiplying the given equation
by I ′ gives (y)J = (y)K from which J = K follows.

Theorem 7. Every ideal in R can be uniquely represented as a product of
prime ideals.

Proof. To show existence, we consider an ideal I that is as large as possible
that is not a product of prime ideals. Then I 6= R (since we regard R as
an empty product of prime ideals). Therefore I is contained in a maximal
(prime) ideal P , I ⊂ P . Clearly I is not equal to P (since we regard a prime
ideal as a product of a single prime ideal) so, by the preceding result, there
is a proper ideal J such that PJ = I. Then I is a proper subideal of J , so J
is a product of prime ideals, and so is I.

To prove uniqueness we observe that if∏
Pi =

∏
Qj

then P1 ⊃
∏
Qj so that some Qj, say Q1 is equal to P1. Applying cancellation

enables us to prove uniqueness by induction.

Say that two ideals I and J in R are equivalent if there are nonzero
elements x and y of the ring such that

xI = yJ.
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It is easy to check that this is an equivalence relation. Multiplication on
ideals induces a multiplication on equivalence classes, and it is easily checked
that this operation has an identity (the entire ring (1)), is commutative, and
is associative.

Theorem 8. Equivalence classes form a group under the above operation.

Proof. If IJ = (y) then
[I][J ] = [R].

The ideal class group of a Dedekind domain R will be denoted Cl(R).
Later we will see that this group is finite if R is the ring of integers in a
number field.


