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Math 431 Class Lecture Notes

• Factorization

• Dedekind domains

0.1 Factorization

In Z[i] every element factors uniquely into primes (irreducibles), up to units.
The primes were easy to ascertain: any prime element in Z[[i] divides a
rational prime number p, So we can find all primes in Z[i] (up to associates)
by factoring rational primes. There were 3 possible factorizations, up to
units.

The caveats about units can be avoided by working with principal ideals.
Thus the statements become: any prime ideal can be found by factoring the
ideals (p) = pZ[i] for rational primes p, and one finds

(2) = (1 + i)2

(p) is a prime ideal if p ≡ 3 mod 4

(p) = (a− bi)(a+ bi) if p ≡ 1 mod 4.

And any ideal factors uniquely into prime ideals.
As we saw earlier, unique factorization does not hold in Z[

√
−5], and the

problem seemed to be that there weren’t “enough” elements. However, it
turns out that unique factorization into prime ideals does hold.
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This property turns out to hold in any number ring ZF , i.e, any ring of
integers in a number field F . Thus even if unique factorization into irreducible
elements does not hold, unique factorization of ideals into prime ideals does
hold, and this is a crucial tool in working with the number theory of the
rings ZF .

0.2 Dedekind domains

In fact, unique factorization of ideals holds more generally in “Dedekind
domains.” These rings are “one-dimensional” and posess a nice theory of
ideals. There are several ways that they can be defined, and we choose one
of the standard ones.

Definition 1. An integral domain R is a Dedekind domain if R satisfies the
following three conditions:

• 1) R is Noetherian,

• 2) if P ⊂ R is a (nonzero) ideal of R, then P is a maximal ideal,

• 3) R is integrally closed in its fraction field.

The last condition means that if an element x of the fraction field F of F
satisfies a monic polynomial with coefficients in R, then x is in R.

Theorem 2. If F is a number field then its ring of integers ZF is a Dedekind
domain.

Proof. Let n = [F : Q]. Then any ideal I of ZF is a subgroup of a free
abelian group of rank n and is itself finitely generated, so ZF is certainly
Noetherian.

In fact, if α1, · · · , αn is a basis of ZF and α is any nonzero element of an
ideal I, then I contains n linearly independent elements ααi, so the rank of I
is n. By our general results on fabs, this means that ZF/I is finite.

Lemma 3. Any finite integral domain is a field.

Proof. Let x belong to A, where A is a finite integral domain and x 6= 0.
Then the sequence 1, x, x2, ... is finite, and so xm+n = xn for some integer m.
Therefore, xn(xm − 1) = 0. Since A is an integral domain, xm − 1 = 0, and
x · xm−1 = 1. Thus any nonzero element has a multiplicative inverse, and A
is a field as claimed.
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Thus if P is a prime ideal of ZF then ZF/P is an integral domain (by
the definition of a prime ideal), and it is finite by the earlier remarks; by the
lemma the quotient is a field and P is a maximal ideal. This finishes the
verification of the first two Dedekind domain properties.

The third property is easy. If α ∈ F satisfies a monic integral equation
with coefficients in ZF then by an earlier exercise it is an algebraic integer.
It follows that α is in ZF .

0.3 Ideals

If I and J are ideals in a ring R then so are

I + J := {x+ y : x ∈ I, y ∈ J}
IJ := {

∑
xiyi : xi ∈ I, yi ∈ J}

I ∩ J := {x : x ∈ I, x ∈ J}

Example 4. If R = Z is the ring of (rational) integers, and I = (m) and
J = (n) then

I + J = (gcd(m,n))

IJ = (mn)

I ∩ J = (lcm(m,n))

The main fact that will underlie all of our results on ideals in Dedekind
domains is that every (nonzero) ideal I is invertible in the sense that there
is an ideal J such that IJ is principal.

Theorem 5. If R is a Dedekind domain then every ideal is invertible.

This will be proved next time; it requires all of the properties of a Dedek-
ing domain, and in fact this invertibility property is more or less equivalent
to being a Dedekind domain.

One of its crucial corollaries is that divisibility and inclusion are inversely
related.

Corollary 6. If I and J are ideals in a Dedekind domain, then I ⊂ J if and
only if there is an ideal K such that I = JK.
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Proof. If I = JK then anything in I is of the form i =
∑
jrkr where the jr

are in J , so i ∈ J . This direction of the corollary is of course true in any
ring.

On the other hand, suppose that I ⊂ J . Choose an ideal J ′ such that
JJ ′ = (α). Then since I ⊂ J , every element of IJ ′ is contained in (α) and
the set K := (1/α)IJ ′ is contained in R. An easy computation shows that
K is an ideal, and a further easy computation shows that JK = I.

As we will see next time, this will enable us to prove that ideals factor
uniquely into prime ideals.

0.4 The ideal class group

The above theorem also lets us prove that “ideals modulo principal ideals”
form a group under (the operation induced by) multiplication. This group is
called the class group and provides a measure of how far a Dedekind ring R
is from being a principal ideal domain (PID).

First we define the desired equivalence relation.

Definition 7. If I and J are ideals in a Dedeking domain, then we say that
I and J are equivalent, written I ∼ J , if there are elements α and β in the
ring such that

α · I = β · J .

This is easily checked to be an equivalence relation. For instance, if
αI = βJ and α′J = β′K then

αα′I = α′βJ = ββ′K.

Theorem 8. Multiplication of ideals induces a well defined operation on the
equivalence classes of ideals, and the set of equivalence classes forms a group
under this operation.

The identity element of the group is the equivalence class of principal
ideals. The existence of inverses follows immediately from the invertibility
of ideals.

Later we will see that if R = ZF is a number ring then the class group,
denoted Cl(F ), is finite. This group arises in numerous situations. Histori-
cally, it first arose in Gauss’s study of which numbers n could be represented
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by binary quadratic forms f(x, y) = ax2 + bxy + cy2. It also arose in early
investigations of Fermat’s Last Theorem; indeed algebraic number theory is
sometimes described as a subject that arose out of efforts to prove this the-
orem. The basic idea is that in the equation xp + yp = zp (where p is an odd
prime), the LHS factors over the ring Z[ω] = Z[e2πi/p]:

xp + yp =
[p−1∏
i=0

(x+ ωiy) = zp.

If the class number is relatively prime to p then with some work one can
show that each of the factors on the LHS must be a p-th power and that
this leads to a contradiction. The class number is prime to p for all but two
primes less than 100.


