
Resultants, Discriminants,
Bezout, Nullstellensatz, etc,

Many computational tasks in number theory, algebra, and algebraic ge-
ometry can be performed quite efficiently by using a hoary old tool of nine-
teenth century algebra, called the resultant. This was originally invented in
order to solve systems of polynomial equations, but turned out to have many
other applications.

Some of these applications have been superseded by such techniques as
Gröbner bases, but it turns out that resultants are still important, both the-
oretically and practically, and they have been making something of a resur-
gence in recent years. The goal of these notes is to give the basic defini-
tions, and to give some sample applications, including: solving systems of
polynomial equations, finding discriminants of polynomials, finding norms in
algebraic extensions, and proving the Nullstellensatz.

Throughout we work over a ring A that we will assume is a UFD (i.e.,
there is unique factorization into primes, up to units) . The cases in which
A = Z, A = Z[x1, · · · , xn], or A = k[x1, · · · , xn] are the only real cases of
interest to us (where k is a field). Since A is an integral domain it has a
fraction field, which we will denote F . Also, it is a standard theorem that if
A is a UFD then so is A[x].

Let

f(X) = f0+f1X+f2X
2+· · ·+fmXm, g(X) = g0+g1X+g2X

2+· · ·+gnXn

be polynomials with coefficients in A. The resultant R(f, g) of f and g is
defined to be the determinant of the “Sylvester matrix”

R(f, g) :=



f0 f1 f2 · · ·
f0 f1 f2 · · ·

f0 f1 f2 · · ·
...

. . .

g0 g1 g2 · · ·
g0 g1 g2 · · ·

g0 g1 g2 · · ·
...

. . .


.
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This matrix is square: it has m+n rows and m+n columns; the first n rows
contain the coefficients of f staggered one position to the right in each suc-
ceeding row and the next m rows contain the coefficients of g similarly placed.
All unlabeled entries are zero. For instance, the resultant of a quadratic and
cubic polynomial is

R(f0 + f1X + f2X
2, g0 + g1X + g2X

2 + g3X
3) = det


f0 f1 f2 0 0
0 f0 f1 f2 0
0 0 f0 f1 f2

g0 g1 g2 g3 0
0 g0 g1 g2 g3



= f 3
2 g

2
0 − f1 f

2
2 g0 g1 + f0 f

2
2 g

2
1 + f 2

1 f2 g0 g2 −
2 f0 f

2
2 g0 g2 − f0 f1 f2 g1 g2 + f 2

0 f2 g
2
2 − f 3

1 g0 g3 +

3 f0 f1 f2 g0 g3 + f0 f
2
1 g1 g3 − 2 f 2

0 f2 g1 g3 − f 2
0 f1 g2 g3 + f 3

0 g
2
3.

By inspection R(f, g) is a polynomial in fi and gi in which each term has
degree n in the fi and m in the gi.

Theorem 1. There are polynomials u(X) and v(X) with deg(u) < n,
deg(v) < m such that

u(X)f(X) + v(X)g(X) = R(f, g).

Proof. Let

u(X) = u0 + u1X + ...+ un−1X
n−1 v(X) = v0 + v1X + ...+ vm−1X

m−1.

be generic polynomials of degrees n−1 and m−1. The equation uf+vg = r ∈
A is equivalent to linear equations on the ui and vj that can be summarized
in matrix form as


f0 · · · g0 · · ·
f1 f0 · · · g1 g0 · · ·
f2 f1 f0 · · · g2 g1 g0 · · ·
...

... · · ·





u0

u1
...
v0

v1
...


=



r
0
0
...
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The coefficient matrix is the transpose of the Sylvester matrix. If R(f, g) 6= 0
then by Cramer’s rule we can solve these equations in A if r = R(f, g). On
the other hand, if R(f, g) = 0 then the matrix is singular and there is a
nonzero solution in the ring. In either case we find that there are polynomials
u(X), v(X) ∈ A[X] such that uf + vg = R(f, g).

Remark 2. This theorem says that the resultant lies in the intersection of
the ideal (f, g) in A[x] generated by f and g, and the subring A of constant
polynomials. It is tempting to conjecture that the ideal (f, g) ∩ A is the
principal ideal generated by R(f, g) but this turns out to be false in general.

Theorem 3. If at least one of the leading coefficients fm, gn is nonzero then
R(f, g) = 0 if and only if f(X) and g(X) have a common factor of positive
degree.

Proof. If f(X) and g(X) have a common factor with positive degree then
the formula

uf + vg = R(f, g)

says that the factor must divide the constantR(f, g) and hence thatR(f, g) =
0.

Conversely, if R(f, g) = 0 then uf = −vg. If, for instance, the leading
coefficient of f is nonzero, then one of the irreducible factors of f must divide
g by unique factorization in A[X] and the fact that v has degree strictly less
than n.

If the polynomials f(X) and g(X) factor completely into linear factors
then their resultant can be expressed as a function of their roots. In other
words, the resultant can be expressed in terms of the polynomial. Note that
we can always find the roots of the polynomials by passing, if necessary, to
the splitting field of f(X)g(X).

Theorem 4. If f(X) and g(X) split into linear factors

f(X) = fm
m∏
i=1

(X − αi), g(X) = gn
n∏
i=1

(X − βi)

then

R(f, g) = fnmg
m
n

m∏
i=1

n∏
j=1

(αi − βj) = fnm

m∏
i=1

g(αi) = (−1)mngmn

n∏
j=1

f(βj).
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Proof. First we prove the formula for the ring

A0 = Z[fm, gn, α1, . . . , αd, β1, . . . , βe]

in which the leading coefficients and the roots are indeterminates. Each of
the coefficients fi is ±fm times an elementary symmetric function of the roots
αj, and similarly for the coefficients of g(X). For instance,

fm−1/fm = −(α1 + · · ·+ αm).

Factoring out fm from the first set of rows in the Sylvester matrix and gn
from the second set of rows shows that R(f, g) is equal to fnmg

m
n times a

function of the roots.
If we think of R(f, g) as a function only of the indeterminate βj then, by

the preceding theorem, the resultant, thought of as a polynomial in βj, has
a root when βj = αi for some i. This says that R(f, g) is divisible by αi− βj
for all i and j so that

R(f, g) = Cfnmg
m
n

m∏
i=1

n∏
j=1

(αi − βj) = Cfnm

m∏
i=1

g(αi) = C(−1)mngmn

n∏
j=1

f(βj)

for some polynomial C in the roots. In fact C is a symmetric function of
the roots and is therefore a polynomial in fi/fm and gj/gn. Since f(βj) is
homogeneous of degree 1 in the fi the product of all f(βj) is of homogeneous
of degree n in the fi. The resultant is of degree n in the fi (from the determi-
nantal expression) so C is independent of the fi. Similarly, C is independent
of the gi. Thus C is a constant (i.e., an integer). The resultant contains the
term fn0 g

m
n (looking down the main diagonal of the Sylvester matrix) and the

expression gmn
∏
f(βi) contains this term. Thus C = 1.

The proof for arbitrary rings is now finished by the sort of trick that
algebraists love. Namely, if A is any ring and f and g factor as in the
statement of the theorem, then there is an obvious homomorphism from A0

to A (the “evaluation” map that takes each of the generic indeterminates
to the corresponding quantity in A). By applying this homomorphism the
formulas in the theorem are true in A since they are true in A0.

Several very useful facts about resultants follow more or less immedi-
ately from the the above the theorems (usually the different expressions in
Theorem 3).
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Corollary 5.

a. R(g, f) = (−1)mnR(f, g).

b. The resultant is multiplicative; i.e.,

R(fg, h) = R(f, h)R(g, h), R(f, gh) = R(f, g)R(f, h).

c. R(f, a) = am, R(X − a, f) = f(a), R(aX + b, f) = amf(−b/a), etc.

d. If we divide f into g to get quotient q(X) and remainder r(X), with
degree(r) = k < d then

R(f, g) = R(f, qf + r) = fn−km R(f, r).

e. R(f(X + a), g(X + a)) = R(f, g).

f. R(f(aX), g(aX)) = amnR(f, g).

g. If F (X) =
∑
fm−iX

i is the “reversal” of f(X) and G(X) is the reversal
of g(X) then R(F,G) = R(f, g).

h. If fi is assigned weight m− i and gj is assigned weight n− j then R(f, g)
is homogeneous of weight mn.

Perhaps d is the key result in that it gives an efficient algorithm for
computing the resultant (much more efficient than computing the original
determinant). Namely, one follows a Euclidean algorithm sort of construction
that decreases the degrees until we reach the base cases described in c..

It seems a pity to deprive the reader the pleasure of proving the above
formulae, so we leave them unproved here.

Example 6. Solving Equations. Resultants can be used to solve equations
in several variables by eliminating variables.

Suppose that we want to find all complex numbers x, y, and z such that

x+ y + z = 6

x2 + y2 + z2 = 14

x3 + y3 + z3 = 36

Although this system is simple enough to solve by hand or by a flash of
insight, let’s try resultants.
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Specifically, think of the equations as three equations in x whose coef-
ficients are in the ring C[y, z]. Then they can have a common root if and
only if the resultant of the first two and the resultant of the first and third
are zero. So we take two resultants with respect to x. Then we have two
polynomials in y with coefficients in C[z] and we are interested in when they
have a common root. So we take their resultant to get a polynomial in z.
The possible values of z for which the system has a solution are the roots of
this polynomial.

More concretely, we find a Unix prompt somewhere and hope that Magma
or Mathematica or Maple is available. For instance, in Mathematica, we
implement the above ideas easily:

In[1]:= f = x+y+z-6; g = x^2+y^2+z^2-14; h = x^3+y^3+z^3-36;

In[2]:= fg = Resultant[f,g,x]
2 2

Out[2]= 22 - 12 y + 2 y - 12 z + 2 y z + 2 z

In[3]:= fh = Resultant[f,h,x]
2 2 2 2

Out[3]= 180 - 108 y + 18 y - 108 z + 36 y z - 3 y z + 18 z - 3 y z

In[4]:= Resultant[fg,fh,y]
2 3 4 5 6

Out[4]= 1296 - 4752 z + 6948 z - 5184 z + 2088 z - 432 z + 36 z

In[5]:= Factor[\%]
2 2 2

Out[5]= 36 (-3 + z) (-2 + z) (-1 + z)

Working backwards, one finds 2 possible values of y for each of the three
values of z, and finds that the linear equation completely determines x once
y and z are known. Thus there are 6 triples all together (the 6 permutations
of 1, 2, 3), and the algebraic geometer would have guessed that to begin with
since the equations are of degrees 1, 2, and 3.
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Example 7. The Discriminant of a polynomial. If a polynomial f
factors into linear factors

f(X) =
m∑
i=0

fiX
i = fm

∏
(X − αi)

then the discriminant of f is defined to be

D(f) = f 2m−2
m

∏
i<j

(αi − αj)2.

(The exponent on the leading coefficient is chosen so that the discriminant of
a polynomial is equal to the discriminant of the polynomial with coefficients
in reverse order.) An easy calculation shows that

fmD(f) = (−1)m(m−1)/2R(f, f ′).

A slightly more difficult calculation shows that

D(fg) = D(f)D(g)R(f, g)2.

In particular, the discriminant of a polynomial is a function only of its
coefficients and it is zero precisely when the polynomial has a repeated root.

In dealing with elliptic curves of the form y2 = x3 + ax + b we will be
interested in whether the cubic polynomial on the right-hand side is separable
(i.e., has distinct roots in a splitting field). This happens if and only if the
discriminant D(x3 + ax+ b) is nonzero. From the above remark we have

D(x3 + ax+ b) = −R(x3 + ax+ b, 3x2 + a).

We can use the earlier Corollary to mechanically calculate this result by
hand:

D(x3 + ax+ b) = −R((3x2 + a)(x/3) + (2ax/3 + b), 3x2 + a)

= −32R(2ax/3 + b, 3x2 + a)

= −32R(3x2 + a, 2ax/3 + b)

= −32(2a/3)2(3(−b/(2a/3))2 + a)

= −32(3b2 + a(2a/3)2) = −27b2 − 4a3.

The discriminant of the general monic cubic polynomial f(X) = X3 +
aX2 + bX + c can be computed by a similar procedure (or just by changing
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variables in the above formula and using the Corollary suitably). The result
is

D(X3 + ax2 + bX + c) = −27c2 − 4b3 + 18abc+ a2b2 − 4a3c.

The basic idea in the computation of resultants is to apply Euclid’s al-
gorithm while keeping track of the resultant by looking at the leading coeffi-
cients that arise. This “gcd” process for computing resultants is significantly
easier than computing the defining determinant even for polynomials of small
degree as above. In general the resultant of two polynomials of degree ap-
proximately n can be computed in time O(n2) by this method, whereas the
computation of the determinant takes time O(n3) (counting, in both cases,
an arithmetic operation as a single step).

Example 8. The irreducible polynomial of the sum of two algebraic
numbers. Suppose that x satisfies the equation x3+x+1 and that y satisfies
the equation y3−2 = 0. Then what is the equation of z = x+y? The number
z is algebraic and you would probably guess, after a little thought, that its
degree is probably nine. In fact the equation can be found just by eliminating
x and y from z − x − y: Rx(Ry(z − x − y, y3 − 2), x3 + x + 1), where the
subscript is the variable being eliminated. In this case the answer is that z
satisfies the equation

0 = −3− 15z − 3z2 + 58z3 + 12z4 + 3z5 − 3z6 + 3z7 + z9.

If the degree of the sum is less than the product of the degrees then the
resultant will factor. Similarly, a polynomial satisfied by the product of two
algebraic numbers can be found as Rx(Ry(z − xy, f), g). the product of two
algebraic numbers.

Example 9. Computing norms in an algebraic extension. If f(X) ∈
k[X] is an irreducible separable monic polynomial of degree n, then any
element in the extension K = k(α), where f(α) = 0, can be written as a
polynomial g(α) in α of degree strictly less than n. The norm NK/k(x) of
g(α) is defined to be the product of all g(αi) over all conjugates of α (i.e.,
other roots of f(X) = 0). By our formula for the resultant, the norm is

NK/k(g(α) = R(g(X), f(X)).
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Example 10. Tschirnhaus transformations. Let K = k(α) be an
algebraic extension as in the preceding example. Then an element g(α) of K
satisfies an equation of degree dividing n. One way to find this equation is to
compute the characteristic polynomial of the linear transformation “multiply
by g(α)” on K as a vector space over k, using the obvious basis 1, α, α2, . . ..
Another way is to eliminate X between the polynomials f(X) and y −X.

For instance, the equation satisfied by x = α3 +α in the extension Q(α),
α5 + α + 1 = 0 is Ry(x− y3 − y, y5 + y + 1) = x5 + 4x3 + 2x2 − x+ 5 = 0.

Example 11. Bezout’s Theorem. If f(x, y) and g(x, y) are polynomials
in two variables that have no common factor, then it isn’t too hard to work
out that in general the resultant R(f, g) with respect to, say, the variable y,
is a polynomial in x of degree at most mn. In other words the intersection
of two curves in the plane, with no common component, has at most mn
points.

Just as one can say that a polynomial of degree n has exactly n roots if
they are counted with multiplicity, Bezout’s Theorem says that plane curves
of degrees m and n intersect in exactly mn points (or infinitely many, if they
share a common component).

In order to make this precise, we have to (a) work over an algebraically
closed field, like the complex numbers, (b) work in projective space (i.e., add
a “line at infinity”), and (c) define “multiplicity” at an intersection of two
curves. This is done carefully in Fulton’s book on algebraic curves; very
briefly, here is a low-tech description in terms of resultants.

Suppose that f(x, y, z), g(x, y, z) ∈ C[x, y, z] are homogeneous polynomi-
als of degrees m and n respectively. The zero sets C = V (f) and D = V (g)
are curves in the projective plane P2 = (C3 − 0)/ ≡ where ≡ is the equiv-
alence relation “are proportional” on nonzero 3-vectors over the complex
numbers. We assume that the polynomials have no common factor, which is
the same as saying that the curves C and D have no common component.
Choose coordinates so that the point p = 0: 0: 1 isn’t in the intersection of
these curves, and so that p isn’t on any of the (finitely many) lines joining
pairs of points in C ∩D. Define the intersection multiplicity I(q, C ∩D) to
be the order of vanishing of Rz(f, g) at x: y where q = x: y: z. The resultant
is nonzero since f and g do not share a common factor, and using our earlier
results it turns out that Rz(f, g) is a homogeneous polynomial of degree mn
in x and y. Such a polynomial factors into mn linear factors, corresponding
to intersection points (counted with multiplicity) and this is Bezout’s Theo-
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rem: curves of degrees m and n in the projective plane over an algebraically
closed field intersect in exactly mn points, counted with multiplicity.

Example. The Nullstellensatz. A famous fundamental result of algebraic
geometry is called the Nullstellensatz. A very concrete form of the “weak
Nullstellensatz” (from which the usual formulation in terms of ideals can be
derived quickly) the either a set of polynomials with complex coefficients has
a common zero, or else there is a concrete certificate that they can’t, namely
there is a linear combination of them equal to 1.

More precisely, suppose that we have a collection

f1, . . . , fm ∈ C[x1, . . . , xn]

of m polynomials in n variables. The weak form of the Nullstellensatz asserts
that exactly one of the following two things must happen:

• A: There is an a ∈ Cn such that fi(a) = 0 for all i, 1 ≤ i ≤ n.

• B: There are polynomials g1, . . . , gm ∈ C[x1, . . . , xn] such that∑
gifi = 1.

In the language of algebraic geometry, if I = (f1, . . . , fm) is the ideal gener-
ated by the fi then A asserts that the mutual zero set V (I) of the ideal is
nonempty and B asserts that I = (1) = C[x1, . . . , xn].

An old-fashioned proof of this result can be given fairly easily using re-
sultants and induction on n. If n = 0 the result is trivial (a collection of
constants either are all zero, or else contain a multiple of one).

Now suppose that the result is true for polynomials with fewer than n vari-
ables. Constants ci can be chosen so that the change of variables of the form

x′i = xi + cixn, 1 ≤ i ≤ n− 1

leaves f1 having its highest term in xn be a constant times xen, while leav-
ing the A/B dichotomy unchanged. (Indeed, the highest term in xn in
F1(x1, . . . , xn): = f1(x′1, . . . , x

′
n) is a nonzero polynomial in the ci; since C

is infinite we can choose constants so that the value of the polynomial is
nonzero. If A is true for the Fi then by the change of variables the fi also
have a common zero. If B is true for the Fi then 1 =

∑
giFi; by reversing
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the change of variables we see that 1 =
∑
hifi so B is true for the original

polynomials.)
If there is only one polynomial (m = 1) then A is true since C is alge-

braically closed, unless the polynomial is a nonzero constant in which case
B is trivially true (this is the only place in the proof where the fact that
C is algebraically closed is used). If m > 1 then introduce indeterminates
u2, . . . , un and compute the resultant

Rxn(f1,
m∑
i=2

uifi)

over the ring A = C[x1, . . . , xn−1, u2, . . . , um]. Collecting terms in this resul-
tant in monomials uα in the ui gives

Rxn(f1,
m∑
i=2

uifi) =
∑
α

Rα(x1, . . . , xn−1)uα.

Apply the induction assumption to the Rα. If case A applies to those
polynomials then there is an a ∈ Cn−1 such that all Rα vanish on a. Since
the leading coefficient of f1 in xn doesn’t vanish on specializing (x1, . . . , xn−1)
to a we conclude that f1 and

∑m
i=2 uifi have a common factor after making

this specialization. Since this factor can’t involve the ui we see that the fi
have a common root and there is an n-tuple on which all fi vanish.

On the other hand, if case B applies to the Rα

1 =
∑

gαRα

for suitable polynomials gα ∈ C[x1, . . . , xn−1]. From our first theorem on
resultants we know that

Rxn(f1,
m∑
i=2

uifi) = G · f1 +H · (
m∑
i=2

uifi)

for suitable polynomials G,H ∈ C[x1, . . . , xn−1, u2, . . . , um]. Collecting terms
in monomials in the ui gives

Rα =
m∑
i=1

hifi

for appropriate hi ∈ C[x1, . . . , xn]. Substituting this into 1 =
∑
gαRα shows

that an appropriate linear combination of the fi is equal to 1 and case B
holds for the fi as desired. This finishes the proof.
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