- 1. For each example, either verify that it is a member of the exponential family and identify the sufficient statistics, or erxplain why it is not a member of the exponential family.
 - (a) X_1, X_2, \ldots, X_n are an IID sample from a Poisson(μ) distribution.
 - (b) X_1, X_2, \ldots, X_n are an IID sample from a Gamma (α, β) distribution.
 - (c) X_1, X_2, \ldots, X_n are an IID sample from a Uniform $(0, \theta)$ distribution.
 - (d) $X_1, X_2, \ldots X_n$ are an IID sample from the 5 parameter mixture distribution with density

 $f(x) = p n(x \mid \mu_1, \sigma_1^2) + (1 - p) n(x \mid \mu_2, \sigma_2^2)$

where $n(x \mid \mu, \sigma^2)$ is the Normal (μ, σ^2) density.

- (e) X is a Negative Binomial(r, p) random variable.
- (f) X_1, X_2, \ldots, X_n are an IID sample from a Cauchy(θ) distribution.
- 2. Let X be a Negative Binomial(r, p) random variable. Recall that if X = k then there were r + k independent Bernoulli(p) trials with r 1's and k 0's.
 - (a) Show that the outcome of the first trial, call it Y_1 , is an unbiased estimator for p.
 - (b) Use the Rao-Blackwell theorem to find a better unbiased estimator.
- 3. Let X_1, X_2, \ldots, X_n be an IID sample from a Poisson (μ) distribution. Note that $\mathbb{P}(X_i = 0) = e^{-\mu}$.
 - (a) What is the MLE for $\theta = e^{-\mu}$? What is its variance (exactly if possible, otherwise approximately)?
 - (b) Define $Y_i = 1$ if $X_i = 0$, and 0 else. Show that \overline{Y} is unbiased for θ . What is its variance?
 - (c) Evaluate $\hat{\theta} = \mathbb{E}(Y_1 | \sum X_i)$ and find its variance.