- 1. For each of the following probability distributions, find the maximum likelihood estimates. Then compute the asymptotic standard error.
 - (a) X_i , $i = 1 \dots n \sim IID$ Unif $(0, \theta)$. Explain why the Uniform is not a 'regular family' (see course notes pages 74-75).
 - (b) $X_i i = 1 \dots n \sim IID$ Poisson(μ).
 - (c) $X \sim \text{Negative Binomial}(r, p)$, where r is known. Compare to a Binomial(n, p), inparticular think about how the numbers of successes and trials affect the likelihood.
 - (d) $X_i i = 1 \dots n \sim IID$ Exponential(λ).
- 2. X_i $i = 1 \dots n \sim IID$ Exponential (λ) , but observations larger than T are censored. In other words, if $X_i > T$ we can't observe its value. Suppose that k of the X's are observed, and n - k are censored. The likelihood for λ may be written as follows:

$$L(\lambda) = \prod_{i=1}^{k} f(X_i \mid \lambda) \prod_{i=k+1}^{n} (1 - F(T \mid \lambda))$$

where f is the density (likelihood!) and F is the CDF.

3. Let X_1, X_2, \ldots, X_k be the counts for *n* independent observations on a multinomial distribution with *k* categories. Note that

$$X_1 + X_2 + \dots X_k = n.$$

Find the MLE's for the probabilities of the k categories: $P_1, P_2, \ldots P_k$. (Note that $P_1 + P_2 + \ldots + P_k = 1$.