1. For each of the following probability distributions, find the maximum likelihood estimates. Then compute the asymptotic standard error.
(a) $X_{i}, i=1 \ldots n \sim I I D \operatorname{Unif}(0, \theta)$. Explain why the Uniform is not a 'regular family'(see course notes pages 74-75).
(b) $X_{i} i=1 \ldots n \sim I I D \operatorname{Poisson}(\mu)$.
(c) $X \sim$ Negative $\operatorname{Binomial}(r, p)$, where r is known. Compare to a $\operatorname{Binomial}(n, p)$, inparticular think about how the numbers of successes and trials affect the likelihood.
(d) $X_{i} i=1 \ldots n \sim I I D \operatorname{Exponential}(\lambda)$.
2. $X_{i} i=1 \ldots n \sim I I D \operatorname{Exponential}(\lambda)$, but observations larger than T are censored. In other words, if $X_{i}>T$ we can't observe its value. Suppose that k of the $X^{\prime} s$ are observed, and $n-k$ are censored. The likelihood for λ may be written as follows:

$$
L(\lambda)=\prod_{i=1}^{k} f\left(X_{i} \mid \lambda\right) \prod_{i=k+1}^{n}(1-F(T \mid \lambda))
$$

where f is the density (likelihood!) and F is the CDF.
3. Let $X_{1}, X_{2}, \ldots X_{k}$ be the counts for n independent observations on a multinomial distribution with k categories. Note that

$$
X_{1}+X_{2}+\ldots X_{k}=n
$$

Find the MLE's for the probabilities of the k categories: $P_{1}, P_{2}, \ldots P_{k}$. (Note that $P_{1}+P_{2}+\ldots+P_{k}=1$.

