1. Show that if the design matrix $\mathbf{X}$ has a column of 1's (that is, the model includes an intercept term), then

$$
\sum r_{i}=0
$$

that is the residuals must sum to zero.
2. For the simple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \quad i=1 \ldots n,
$$

find the expression for the coefficients resulting from direct computation via the matrix formula

$$
\hat{\beta}=\left(\mathbf{X}^{t} \mathbf{X}\right)^{-1} \mathbf{X}^{t} \mathbf{Y}
$$

Note that the design matrix $\mathbf{X}$ has two columns: the first is all 1's, the second is the values $X_{1}, X_{2}, \ldots X_{n}$. Can you think of any reason not to do the calculation this way?
3. Suppose that $Y_{i}=\theta+\epsilon_{i}$, where $\epsilon_{i}$ are IID with $\mathbb{E}\left(\epsilon_{i}\right)=0$ and finite variance. Find the least squares estimator for $\theta$. Can you figure out what the minimum absolute deviation estimator for $\theta$ is? Proof not required. (The MAD estimator chooses $\theta$ to minimize $\sum\left|Y_{i}-\theta\right|$ rather than $\sum\left(Y_{i}-\theta\right)^{2}$. Experimenting with a small sample of numbers, say 5 or 6 , may help!)
4. For each of the following distributions, try to find a conjugate or other convenient prior distribution. For that prior, produce an estimator such as the posterior mean, and find the posterior variance.
(a) $X_{1}, X_{2}, \ldots X_{n}$ are $I I D \operatorname{Uniform}(0, \theta)$.
(b) $X$ is Negative $\operatorname{Binomial}(r, p)$. ( $r$ is known.)
(c) $X_{1}, X_{2}, \ldots X_{n}$ are IID Poisson( $\lambda$ ).

