1. Let $X_{1}, X_{2}, \ldots X_{n}$ be IID Poisson (θ). Find 95% confidence/probability intervals by the following methods for Ladislaus von Bortkiewicz's data on deaths by horse kick for Prussian Cavalry units (Das Gesetz der kleinen Zahlen, 1898). Here is some R code to create the dataset:
```
Deaths = c(0,1,2,3,4,5)
N = c(109,65, 22, 3,1,0)
    # expand the dataset into individual cases
D1 = rep(Deaths,N)
```

(a) An 'exact' confidence interval using the same idea as the Clopper-Pearson interval for the binomial, ie solve the following equations for lower and upper bounds, for

$$
\begin{gathered}
Y=\sum X_{i} \sim \operatorname{Poisson}(n \theta): \\
\theta_{L}=\inf \left\{\theta: \mathbb{P}\left(Y \geq Y_{\text {obs }} \mid \theta\right) \geq .025\right\} \\
\theta_{U}=\sup \left\{\theta: \mathbb{P}\left(Y \leq Y_{\text {obs }} \mid \theta\right) \geq .025\right\}
\end{gathered}
$$

(b) The asymptotic confidence interval based using the fact that \bar{X} is approximately $\operatorname{Normal}\left(\theta, 1 / I_{n}(\theta)\right.$.
(c) The confidence interval based on the asymptotic normality of the score function, that is, solve the following for $\left(\theta_{L}, \theta_{U}\right)$:

$$
\left|\frac{U_{n}(\tilde{X})}{\sqrt{I_{n}(\theta)}}\right|=1.96
$$

(d) The confidence interval based on the likelihood ratio test statistic:

$$
2(\log (f(\tilde{X} \mid \hat{\theta}))-\log (f(\tilde{X} \mid \theta))) \sim \chi_{p}^{2}
$$

In other words,

$$
\{\theta: \log (f(\tilde{X} \mid \hat{\theta}))-\log (f(\tilde{X} \mid \theta))) \leq 3.84 / 2\}
$$

(e) A Bayesian HPD region of posterior probability .95 using a Gamma($5, \frac{1}{2}$) prior. Hint: the R function $\operatorname{pgamma}(\mathrm{x}, \mathrm{a}, \mathrm{b})$ computes the probability that a Gamma(a, b) random variable is less than x , that is the $\operatorname{CDF} F(x \mid a, b)$. Hence the probability of the interval $\left(X_{L}, X_{U}\right)$ is $F\left(X_{U} \mid a, b\right)-F\left(X_{L} \mid a, b\right)$.

