Midterm Examination

Quantum Mechanics II

Physics 442

Due Date: March 8th, 2024

Instructions: There are four problems (ten points each). You may use any online/book resource you like (cite where appropriate) but may not work with other people on the exam, nor ask any real-time questions of the internet (i.e. no ChatGPT or similar). If you have any questions about what resources are available, or have any questions about what a problem is asking, please contact the course instructor. The examination is due by noon on Friday, March 8th (turn in via gradescope).

Problem 1

a. For a Hermitian matrix $\mathbb{A} \in \mathbb{C}^{n \times n}$, we define its square root to be a matrix \mathbb{B} such that $\mathbb{B} \mathbb{B}=\mathbb{A}$. Assuming such a matrix exists, how would you construct it?
b. Show that the eigenvalues of an anti-Hermitian matrix, $\mathbb{A}^{\dagger}=-\mathbb{A}$, are imaginary. Assuming the eigenvalues are all distinct, how are the eigenvectors related (for Hermitian matrices, they are orthogonal)?
c. For two Hermitian matrices \mathbb{A} and $\mathbb{B} \in \mathbb{C}^{n \times n}$, if $\mathbb{A} \mathbb{B}+\mathbb{B} \mathbb{A}=0$, is it possible for the matrices to share one or more eigenvectors? If so, provide an example, if not, prove it.

Problem 2

Find the explicit form of the harmonic oscillator raising and lowering operators in the Heisenberg picture as functions of time, i.e. What are $\hat{a}_{H \pm}(t)=$?

Problem 3

The operator $\hat{Q}(a)$ acts on a wavefunction $\psi(x, y, z)$ (in position basis) according to:

$$
\hat{Q}(a) \psi(x, y, z)=\psi(x+a y, y+a x, z) .
$$

a. Find the "infinitesimal generator" of this transformation, i.e. what operator, \hat{J}, has $(1+(i \epsilon / \hbar) \hat{J}) \psi(x, y, z)$ that matches $\hat{Q}(\epsilon) \psi(x, y, z)$ through order ϵ ? From the infinitesimal generator, construct the full, unitary $\hat{Q}(a)$.
b. How do the operators $\hat{x}, \hat{y}, \hat{p}_{x}$ and \hat{p}_{y} respond to the infinitesimal form of the transformation $\hat{Q}(\epsilon)$?
c. Evaluate $\frac{d\langle\hat{J}\rangle}{d t}$ for a free particle in three dimensions (you want $\frac{d\langle\hat{J}\rangle}{d t}=\square$, where the right hand side should involve the expectation value of some function of the $\hat{x}, \hat{y}, \hat{p}_{x}$ and \hat{p}_{y} operators).

Problem 4

For the potential energy

$$
U(x)=\left\{\begin{array}{cc}
U_{0} & 0<x<a / 2 \\
0 & a / 2<x<a \\
\infty & x<0 \text { and } x>a .
\end{array}\right.
$$

Use the WKBJ approximation to find the energy spectrum.

