Problem Set 8

Physics 442
Quantum Mechanics II

Due on Friday, April 5th, 2024

Problem 1

Using the variational principle with a Gaussian trial wave function,

$$
\begin{equation*}
\psi(x)=\psi_{0} e^{-b r^{2}}, \tag{1}
\end{equation*}
$$

what is your best estimate of the ground state energy of hydrogen, and how does it compare with the actual ground state energy?

Problem 2

Griffiths \& Schroeter Problem 8.4b — Using parity to ensure a first-excited state approximation.

Problem 3

Griffiths \& Schroeter Problem 8.7 - stripping one electron from helium (ground state).

Problem 4

In situations where there are both bound and scattering states, completeness requires a sum over the bound states and an integral over the scattering states. The scattering states of the delta well, $V(x)=-\alpha \delta(x)$, look a lot like Fourier modes, and "any" function can be written in terms of its Fourier transform, so it would appear that any $f(x)$ could be written as a sum of the scattering states of the delta well. Show that the bound state cannot.

Problem 5

A "soft-sphere" is a sphere of radius R that has uniform potential energy U_{0} inside of it (the potential energy outside the sphere is zero). A particle with energy E enters the soft sphere with impact parameter b, what is the scattering angle, θ_{s}, at which it emerges (assume $E>U_{0}$)?

Presentation Problem

This problem will either be presented in class on Friday (April 5th), or presented in written form, due by Friday. Take a look at it over the weekend, I'll ask for a volunteer on Monday. Whether or not you present the problem or not, you should solve it and be prepared to discuss it in class.

Problem 1*

For a massive photon, the Coulomb potential for a point charge is replaced by the Yukawa potential. For a proton with charge e and an electron with charge $-e$, the potential energy set up by the proton is

$$
\begin{equation*}
U(\mathbf{r})=-\frac{e^{2} e^{-\mu r}}{4 \pi \epsilon_{0} r} \tag{2}
\end{equation*}
$$

with $\mu \equiv m_{\mathrm{ph}} c / \hbar$ where m_{ph} is the photon mass. Estimate the ground state energy for "hydrogen" using this potential energy for the proton-electron interaction.

