Problem Set 1

Physics 442
Quantum Mechanics II

Due on Friday, February 2nd, 2024

Problem 1

A (classical) particle of mass m travels from $z<0$ into a region of non-zero potential energy U_{0} with $z>0$. If the "angle of incidence" is θ_{i} (associated with the incoming velocity vector $\mathbf{v}_{i}=v \sin \theta_{i} \hat{\mathbf{x}}+v \cos \theta_{i} \hat{\mathbf{z}}$), what is the transmitted angle θ_{t} associated with the "outgoing" velocity vector \mathbf{v}_{t} ? The setup, with angles shown, is shown below:

Problem 2

For a Lagrangian written in spherical coordinates,

$$
\begin{equation*}
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)-U(r, \theta, \phi) \tag{1}
\end{equation*}
$$

develop the associated Hamiltonian. If the potential energy U does not depend
on ϕ, show that there is a constant of the motion and give its form in terms of r, θ, ϕ and their time derivatives.

Problem 3

The Poisson bracket of functions $f(x, p)$ and $g(x, p)$ is defined to be

$$
\begin{equation*}
\{f, g\} \equiv \frac{\partial f}{\partial x} \frac{\partial g}{\partial p}-\frac{\partial f}{\partial p} \frac{\partial g}{\partial x} \tag{2}
\end{equation*}
$$

Evaluate the Poisson bracket of x and $p:\{x, p\}=?$. How would you turn this result into a quantum mechanical commutator, i.e. what is the rule taking $\{x, p\}$ to the quantum $[x, p]$?

Problem 4

For a function $J(x(t), p(t), t)$, write the total time derivative of J evaluated along a Hamiltonian trajectory (meaning that $x(t)$ and $p(t)$ satisfy the Hamilton equations of motion). Express your solution in terms of the "Poisson Bracket" defined in (2).

Problem 5

A particle of mass m with charge q moves in a magnetic field with vector potential A, a function of position (but, you may assume, not time). The Hamiltonian governing its motion is

$$
\begin{equation*}
H=\frac{1}{2 m}(\mathbf{p}-q \mathbf{A}) \cdot(\mathbf{p}-q \mathbf{A}) \tag{3}
\end{equation*}
$$

Find the equations of motion for this Hamiltonian, and show that they are equivalent to $m \ddot{\mathbf{r}}=q \dot{\mathbf{r}} \times \mathbf{B}$.

Problem 6

For a rotation about the $\hat{\mathbf{z}}$ axis, we have new coordinates:

$$
\left(\begin{array}{c}
\bar{x} \tag{4}\\
\bar{y} \\
\bar{z}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)}_{\equiv \mathbb{O}}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) .
$$

Write the infinitesimal form (for small θ) of the matrix \mathbb{O} appearing in the transformation, it should take the form: $\mathbb{O} \approx \mathbb{I}+\theta \mathbb{L}_{z}$. By considering infinitesimal rotations about the $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ axes (keeping the sense of the rotation the same), identify the set $\mathbb{L}_{x}, \mathbb{L}_{y}$ and \mathbb{L}_{z}, and compute the commutators of these matrices. Do they look familiar?

Problem 7

Find the bound state wavefunctions and energies for the "centered" square well with potential energy:

$$
U(x)= \begin{cases}\infty & x<-a / 2 \text { and } x>a / 2 \tag{5}\\ 0 & -a / 2<x<a / 2\end{cases}
$$

