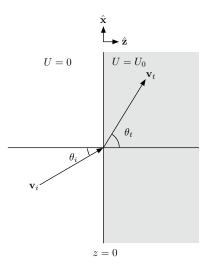
Problem Set 1

Physics 442 Quantum Mechanics II

Due on Friday, February 2nd, 2024

Problem 1

A (classical) particle of mass m travels from z < 0 into a region of non-zero potential energy U_0 with z > 0. If the "angle of incidence" is θ_i (associated with the incoming velocity vector $\mathbf{v}_i = v \sin \theta_i \hat{\mathbf{x}} + v \cos \theta_i \hat{\mathbf{z}}$), what is the transmitted angle θ_t associated with the "outgoing" velocity vector \mathbf{v}_t ? The setup, with angles shown, is shown below:



Problem 2

For a Lagrangian written in spherical coordinates,

$$L = \frac{1}{2}m\left(\dot{r}^{2} + r^{2}\dot{\theta}^{2} + r^{2}\sin^{2}\theta\dot{\phi}^{2}\right) - U(r,\theta,\phi)$$
(1)

develop the associated Hamiltonian. If the potential energy \boldsymbol{U} does not depend

on ϕ , show that there is a constant of the motion and give its form in terms of r, θ , ϕ and their time derivatives.

Problem 3

The Poisson bracket of functions f(x, p) and g(x, p) is defined to be

$$\{f,g\} \equiv \frac{\partial f}{\partial x}\frac{\partial g}{\partial p} - \frac{\partial f}{\partial p}\frac{\partial g}{\partial x}.$$
 (2)

Evaluate the Poisson bracket of x and p: $\{x, p\} = \boxed{?}$. How would you turn this result into a quantum mechanical commutator, i.e. what is the rule taking $\{x, p\}$ to the quantum [x, p]?

Problem 4

For a function J(x(t), p(t), t), write the total time derivative of J evaluated along a Hamiltonian trajectory (meaning that x(t) and p(t) satisfy the Hamilton equations of motion). Express your solution in terms of the "Poisson Bracket" defined in (2).

Problem 5

A particle of mass m with charge q moves in a magnetic field with vector potential **A**, a function of position (but, you may assume, not time). The Hamiltonian governing its motion is

$$H = \frac{1}{2m} (\mathbf{p} - q\mathbf{A}) \cdot (\mathbf{p} - q\mathbf{A}) \,. \tag{3}$$

Find the equations of motion for this Hamiltonian, and show that they are equivalent to $m\ddot{\mathbf{r}} = q\dot{\mathbf{r}} \times \mathbf{B}$.

Problem 6

For a rotation about the $\hat{\mathbf{z}}$ axis, we have new coordinates:

$$\begin{pmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{pmatrix} = \underbrace{\begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\equiv \mathbb{O}} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$
(4)

2 of 3

Write the infinitesimal form (for small θ) of the matrix \mathbb{O} appearing in the transformation, it should take the form: $\mathbb{O} \approx \mathbb{I} + \theta \mathbb{L}_z$. By considering infinitesimal rotations about the $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ axes (keeping the sense of the rotation the same), identify the set \mathbb{L}_x , \mathbb{L}_y and \mathbb{L}_z , and compute the commutators of these matrices. Do they look familiar?

Problem 7

Find the bound state wavefunctions and energies for the "centered" square well with potential energy:

$$U(x) = \begin{cases} \infty & x < -a/2 \text{ and } x > a/2\\ 0 & -a/2 < x < a/2 \end{cases}$$
(5)