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1 Second Quantization

The example of the Klein Paradox (particle production for scattering off of a step potential)
focuses our attention on the number of particles occupying various states (scattering states
in that case). There is a way of formulating quantum mechanics in which the number
of particles occupying a particular state is the main computational focus. We’ll start
off with a discrete system, like the harmonic oscillator or infinite square well, where we
have a Hamiltonian H(x) and a set of single-particle eigenstates {ψj(x)}∞j=0 with energies
{Ej}∞j=0 such that H(x)ψj(x) = Ejψj(x). We assume that the single particle states are
orthonormal, ∫ ∞

−∞
ψ∗j (x)ψk(x)dx = δjk, (1)

and complete, so that any normalizable ψ(x) can be developed from a sum of the form

ψ(x) =

∞∑
j=0

ajψj(x), (2)

with related identity,
∞∑
j=0

ψ∗j (x)ψj(x
′) = δ(x− x′). (3)

As a check of this expression, take a square-integrable “test function” f(x). We will show
that ∫ ∞

−∞

f(x)

∞∑
j=0

ψ∗j (x)ψj(x
′)

 dx = f(x′). (4)

First note that since f(x) is square integrable, we can find {ak}∞k=0 such that

f(x) =
∞∑
k=0

akψk(x). (5)
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Using this relation on the left in (4), we get∫ ∞
−∞

∞∑
j,k=0

akψ
∗
j (x)ψk(x)ψj(x

′)dx =
∞∑

j,k=0

[
ak

∫ ∞
−∞

ψ∗j (x)ψk(x)dx

]
ψj(x

′)

=

∞∑
k=0

akψk(x′) = f(x′),

(6)

as desired.

1.1 A Few Particles

Suppose now that we have two particles, one in the jth state, with wave function ψj(x1),
the other in the kth state (for j 6= k), with wave function ψk(x2). We’d like a wave
function ψ(x1, x2) that allows us to combine the two particles. Adding the Hamiltonians
together, as we would do classically, define H(x1, x2) = H(x1) + H(x2). The product,
ψ(x1, x2) = ψj(x1)ψk(x2), is an eigenfunction of H(x1, x2):

H(x1, x2)ψj(x1)ψk(x2) = H(x1)ψj(x1)ψk(x2)+ψj(x1)H(x2)ψk(x2) =(Ej + Ek)ψj(x1)ψk(x2).
(7)

To add more particles, just expand the product. For two particles with coordinates x1
and x2 in the jth state, and one with coordinate x3 in the kth state, the Hamiltonian is
H(x1, x2, x3) = H(x1) +H(x2) +H(x3), and ψ(x1, x2, x3) = ψj(x1)ψj(x2)ψk(x3) has

H(x1, x2, x3)ψ(x1, x2, x3) =(2Ej + Ek)ψ(x1, x2, x3). (8)

Unsurprisingly, the energy here is just the number of particles in each state times the
energy of that state.

We can stick with three particles but distribute them differently among the available
energy levels: φ(x1, x2, x3) = ψj(x1)ψk(x2)ψk(x3) has two particles in the kth state with
one in the jth state. It is clear that ψ(x1, x2, x3) and φ(x1, x2, x3) are both normalized,
since the single particle states are:∫

ψ∗(x1, x2, x3)ψ(x1, x2, x3)dx1dx2dx3 = 1 =

∫
φ∗(x1, x2, x3)φ(x1, x2, x3)dx1dx2dx3.

(9)
How about the overlap of these two different distributions of particles? Let’s compute:∫
ψ∗(x1, x2, x3)φ(x1, x2, x3)dx1dx2dx3 =

∫
ψ∗j (x1)ψ

∗
j (x2)ψ

∗
k(x3)ψj(x1)ψk(x2)ψk(x3)dx1dx2dx3

=

∫
ψ∗j (x2)ψk(x2)dx2 = 0,

(10)
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which shows that configurations with different numbers of particle per single-energy eigen-
state are orthogonal.

Keeping track of all of the particles via a spatial wave function can get tedious, as
the above calculations suggest. A natural abstract ket to describe the physical state of
these systems is |NjNk〉, where Nj is the number of particles in the jth state, and Nk the
number in the kth. First note that 〈NjNk|NjNk〉 = 1, the states are normalized since the
single-particle ones are. Now suppose you have the overlap of |NjNk + 1〉 with |Nj + 1Nk〉,
so that we have the same total number of particles, but there is a mis-match in the single-
particle states that are occupied. From the example in (10), it is clear there will always
be a non-overlapping pair, so that 〈NjNk + 1|Nj + 1Nk〉 = 0. More general occupation
mismatches yield the same result. For a state |NjNk〉 and another |N ′jN ′k〉,

〈N ′jN ′k|NjNk〉 = δNjN ′
j
δNkN

′
k

with Nj +Nk = N ′j +N ′k. (11)

The matrix elements of the Hamiltonian, computed in the position basis as above, are

〈N ′jN ′k|Ĥ|NjNk〉 =(NjEj +NkEk) δNjN ′
j
δNkN

′
k
, (12)

where Ĥ is the Hamiltonian operator (not necessarily written in the position basis). The
multi-particle states are eigenstates of the Hamiltonian operator,

Ĥ|NjNk〉 =(NjEj +NkEk) |NjNk〉., (13)

with energies that are fixed by the single-particle system,

Ej =

∫
ψ∗j (x)H(x)ψj(x)dx. (14)

The goal is to write Ĥ in terms of some other, “natural,” operators.
To that end, working by analogy with the structure of the raising and lowering operators

of the harmonic oscillator, define the action of â†j on |NjNk〉 by

â†j |NjNk〉 =
√
Nj + 1|Nj + 1Nk〉 (15)

so that the operator â†j adds a particle of energy Nj to the system. There is no reason
to define such an operator in the non-relativistic case, because the Schrödinger equation
does not involve a changing number of particles. But again referring to the Klein Paradox,
relativistic forms of quantum mechanics can “produce” particles even via single-particle
interactions with a potential, and it is this type of behavior that motivates the notation.

Going along with the “raising” operator, define âj by its action on |NjNk〉:

âj |NjNk〉 =
√
Nj |Nj − 1Nk〉. (16)
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This operator “removes” a particle of energy Nj . The numbers out front are normalizations
that are reminiscent of the oscillator’s raising and lowering operators. If we “add” a particle
of energy Ej then remove it,

âj â
†
j |NjNk〉 = âj

√
Nj + 1|Nj + 1Nk〉 = (Nj + 1)|NjNk〉, (17)

and the state |NjNk〉 is an eigenstate of the âj â
†
j operator, with eigenvalue Nj+1. Similarly,

removing, then adding a particle gives

â†j âj |NjNk〉 = â†j
√
Nj |Nj − 1Nk〉 = Nj |NjNk〉. (18)

This one’s even better – the eigenvalue here is the number of particles in the jth state. The
operator â†j âj is called the “number operator.” Taken together (17) and (18) give

âj â
†
j − â

†
j âj = 1, (19)

defining the commutation relation for the creation and annihilation operators: [âj , â
†
j ] = 1.

The operators that create and remove particles of energy Ek, the â†k and âk, behave
similarly,

â†k|NjNk〉 =
√
Nk + 1|NjNk + 1〉 âk|NjNk〉 =

√
Nk|NjNk〉 [âk, â

†
k] = 1. (20)

The âk and âj operators do not talk to one another, acting as they do on particles of
different energy:

[âj , âk] = 0 = [â†j , âk] = [â†j , â
†
k] = [âj , â

†
k]. (21)

There is a state that has no particles in the jth and kth single-particle states, |00〉, the
“vacuum” here. If we act on this state with either âj or âk, we should get zero, just as
the lowering operator of the harmonic oscillator, acting on the ground state, gives zero.
Above, we have tacitly assumed that neither Nj nor Nk are zero, but for completeness, we
now record

âj |0Nk〉 = 0 âk|Nj0〉 = 0, (22)

removing a particle that doesn’t exist produces nothing.
The Hamiltonian operator’s action on |NjNk〉 can now be written in terms of the

creation and annihilation operators,

Ĥ|NjNk〉 =
(
Ej â

†
j âj + Ekâ

†
kâk

)
|NjNk〉, (23)

giving, in this basis,
Ĥ = Ej â

†
j âj + Ekâ

†
kâk. (24)

We have focused on two different (single-particle) energy levels to keep the notation
simple, but it is clear that to include any of the single-particle states all we need are the
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occupation numbers: N0 (number of particles in the ground state of the original Hamilto-
nian) N1 (number of particles in the first excited state), etc. Each single particle energy

eigenstate has its own creation and destruction operators, â†0, â0, â
†
1, â1, etc. The generic

state is then an infinite string |N0N1N2 . . . N` . . .〉. The generalization of (24) is

Ĥ =

∞∑
j=0

Ej â
†
j âj . (25)

The multi-particle state with nothing in it is denoted |0〉 and called the “vacuum.” A state

with one particle in the jth state can then be constructed using â†j : â
†
j |0〉. To get a state

with 2 particles in the jth state, we apply 1/2â†j to â†j |0〉, and so on. To get a state with
Nj particles, each with energy Ej , take

1√
Nj !

(
â†j

)Nj

|0〉, (26)

and similarly to populate other single particle eigenstates.
The expression in (25) generalizes for other operators that act on single-particle states.

Let’s write (25) in terms of the matrix elements, in position basis:

Hnm ≡
∫
ψ∗n(x)H(x)ψm(x)dx = δnmEn, (27)

then

Ĥ =
∞∑

n,m=0

Hnmâ
†
nâm. (28)

The same procedure can be used to express other operators as sums of â†â. For a generic
single particle operator that depends on position, Q(x), the corresponding operator that
acts on |N0N1N2 . . . N` . . .〉 is:

Q̂ =
∞∑

n,m=0

Qnmâ
†
nâm Qnm ≡

∫
ψ∗n(x)Q(x)ψm(x)dx. (29)

So far, we have used the non-interacting single particle states of the original Hamilto-
nian, H(x), with its external potential that depends only on the particle position, V (x).
Now we want to allow interactions between particles, a potential V (x1, x2), like, for ex-
ample, the Coulomb potential. How do operators like this behave when acting on the
occupation kets? Just as Ĥ in (25) is a sum of of the single-particle Hamiltonian applied
to each coordinate, we can form an operator that sums V (x1, x2) over all coordinate pairs,
being careful not to double-count:

V =
∑
i>j

V (xi, xj) (30)
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and then the analogue of (29) is

V̂ =
1

2

∞∑
i,j,k,`=0

Qijk`â
†
i â
†
j â`âk Qijk` ≡

∫ ∫
ψ∗i (x)ψ∗j (y)V (x, y)ψk(x)ψ`(y)dxdy. (31)

For a Hamiltonian of the form: − ~2
2m

d2

dx2ψ(x) +U(x) + V (x, y), H(x) covers the kinetic
and U(x) piece of the potential, with V (x, y) the interaction term. The corresponding
occupancy number operator is

Ĥ =
∞∑

n,m=0

Hnmâ
†
nâm +

1

2

∞∑
i,j,k,`=0

Qijk`â
†
i â
†
j â`âk. (32)

1.2 Wave function operators

We know that â†i âi tells us the number of particles in the ith single particle state,

â†i âi|N0N1 . . . Ni−1NiNi+1 . . .〉 = Ni|N0N1 . . . Ni−1NiNi+1 . . .〉. (33)

Notice that the occupancy state is an eigenvector of the operator. To count the total
number of particles, we sum up the individual occupancies,

N̂ ≡
∞∑
i=0

â†i âi (34)

and then

N̂ |N0N1 . . .〉 =

( ∞∑
i=0

Ni

)
|N0N1 . . .〉. (35)

We can build up linear combinations of the creation and annihilation operators. Define
the operators

ψ̂(x) =
∞∑
i=0

ψi(x)âi ψ̂†(x) =
∞∑
i=0

ψ∗i (x)â†i (36)

where the coordinate (and potentially spin) dependence in ψi(x) represents parameters

of the operators ψ̂(x) and ψ̂†(x). The operator â†i creates a particle with wave function

ψi(x), or informally, ψi(x) = 〈x|â†i |0〉. Then the operator ψ̂†(y) creates a particle with
wave function:

〈x|ψ̂†(y)|0〉 =

∞∑
i=0

ψ∗i (y)ψi(x) = δ(x− y), (37)

a particle localized at y (using (3)). Similarly, the operator ψ̂(y) destroys a particle located
at y.
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To see that the operator ψ̂† generates one and only one particle, act on ψ̂†(x)|0〉 with
N̂ :

N̂ψ̂†(x)|0〉 =
∞∑
j=0

â†j âj

( ∞∑
i=0

ψ∗i (x)â†i |0〉

)
=
∞∑
j=0

∞∑
i=0

ψ∗i (x)â†j âj â
†
i |0〉, (38)

and âj â
†
i − â

†
i âj = δij , so that

N̂ψ̂†(x)|0〉 =
∞∑
j=0

∞∑
i=0

ψ∗i (x)â†j

(
δij + â†i âj

)
|0〉 =

∞∑
j=0

∞∑
i=0

ψ∗i (x)δij â
†
j |0〉 = ψ̂†(x)|0〉, (39)

(using âj |0〉 = 0). The eigenvalue of the N̂ operator, acting on ψ̂†(x)|0〉, is N = 1.
The commutator structure for these new operators is inherited from the structure of

the creation and annihilation operators:

[ψ̂(x), ψ̂(y)] = 0 (40)

since [âi, âj ] = 0, and similarly for [ψ̂†(x), ψ̂†(y)] = 0. For the commutator of ψ̂†(x) with

ψ̂(y),[
ψ̂(x), ψ̂†(y)

]
=
∑
i,j

ψi(x)ψ∗j (y)[âi, â
†
j ] =

∑
i,j

ψi(x)ψ∗j (y)δij =
∑
i

ψ∗i (x)ψi(y) = δ(x− y)

(41)
from (3) again.

The relations in (36) can be inverted to express the operators âj and â†j in terms of ψ̂(x)

and ψ̂†(x). From the definition of ψ̂(x), multiply both sides by ψ∗j (x) (the single-particle
wavefunction) and integrate over all space,∫

ψ∗j (x)ψ̂(x)dx =
∞∑
i=0

(∫
ψ∗j (x)ψi(x)dx

)
âi = âj (42)

and similarly, ∫
ψj(x)ψ̂†(x)dx =

∞∑
i=0

(∫
ψ∗i (x)ψj(x)dx

)
â†i = â†j (43)

Going back to the generic operator Q̂ from (29), collect terms into sums that become
the operators ψ̂(x) and ψ̂†(x):

Q̂ =
∑
n

∑
m

â†n

∫
ψ∗n(x)Q(x)ψm(x)dxâm =

∫ [∑
n

â†nψ
∗
n(x)Q(x)

∑
m

âmψm(x)

]
dx

=

∫
ψ̂†(x)Q(x)ψ̂(x)dx.

(44)

7



Similarly, the two-body potential operator is

V̂ =
1

2

∫ ∫
ψ̂†(x)ψ̂†(y)V (x, y)ψ̂(y)ψ̂(x)dxdy, (45)

and then the Hamiltonian operator from (32) can be written as

Ĥ =

∫
ψ̂†(x)H(x)ψ̂(x)dx+

1

2

∫ ∫
ψ̂†(x)ψ̂†(y)V (x, y)ψ̂(y)ψ̂(x)dxdy. (46)

To make a “generic” state, act on the vacuum |0〉 with the position creation operator
ψ̂†(x) and weighted by f(x), then sum over all positions:∫

f(x)ψ̂†(x)|0〉dx. (47)

The resulting state, a continuous superposition of ψ̂†(x)|0〉, is an eigenstate of the Hamil-
tonian operator Ĥ,

Ĥ

∫
f(x)ψ̂†(x)|0〉dx = E

∫
f(x)ψ̂†(x)|0〉dx. (48)

Using ψ̂(x)|0〉 = 0 (since the ψ̂(x) operator is made up entirely of âi operators, each of which
returns zero when acting on the vacuum) and the commutator [ψ̂(x), ψ̂†(y)] = δ(x− y) to
expand the left-hand side gives∫ ∫

H(y)f(x)ψ̂†(y)ψ̂(y)ψ̂†(x)|0〉dxdy =

∫
H(x)f(x)ψ̂†(x)|0〉dx, (49)

so that we must have H(x)f(x) = Ef(x) from the right-hand sides of (48) and (49) . The
weighting function satisfies the single-particle Schrödinger equation. The term that acts on
pairs of particles went away because of the double ψ̂(x)ψ̂(y) acting on ψ̂†(x)|0〉. Starting
with a state that has two particles, and a weighting function f(x1, x2),∫

f(x1, x2)ψ̂
†(x1)ψ̂

†(x2)|0〉dx1dx2, (50)

acting with Ĥ, and requiring that the resulting state is an eigenstate, gives

[H(x1) +H(x2) + V (x1, x2)] f(x1, x2) = Ef(x1, x2), (51)

where V (x1, x2) is the interaction potential energy. The process continues for more and
more particles. The wave functions we are used to from “ordinary” quantum mechanics
emerge when we constrain the quantum field to a particular number of particles.
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Finally, let’s turn the whole procedure around, and imagine we were handed (46) as
a classical Hamiltonian governing the complex field ψ̂(x, t) with a Hamiltonian H(x) =

− ~2
2m

d2

dx2 + V (x). The operator equation of motion is given by

i~
∂ψ̂

∂t
= −[Ĥ, ψ̂] = H(x)ψ̂, (52)

which is just Schrödinger’s equation.
If we include the additional term for two-body interactions, we have to evaluate the

commutator [
ψ̂(z),

∫ ∫
V (x, y)ψ̂†(x)ψ̂†(y)ψ̂(x)ψ̂(y)dxdy

]
=

∫ ∫ (
δ(x− z) + ψ̂†(x)ψ̂(z)

)
ψ̂†(y)ψ̂(x)ψ̂(y)V (x, y)dxdy

−
∫ ∫

ψ̂†(x)
(
ψ̂(z)ψ̂†(y)− δ(y − z)

)
ψ̂(x)ψ̂(y)V (x, y)dxdy

=

∫
ψ̂†(y)ψ̂(y)ψ̂(z)(V (z, y) + V (y, z)) dy

(53)

Now, the operator equation of motion for ψ̂ is

i~
∂ψ̂

∂t
= H(x)ψ̂(x) +

1

2

[∫
ψ̂†(y)ψ̂(y) [V (z, y) + V (y, z)] dy

]
ψ̂(z). (54)

If we take the potential between two particles to be a contact interaction, V (x, y) =
V0δ(x− y), then the equation in (54) becomes

i~
∂ψ̂

∂t
= Hψ̂ + V0ψ̂

†ψ̂ψ̂, (55)

which is known as the “nonlinear Schrödinger equation.” Using the non-local electromag-
netic and/or gravitational potential V (x, y) = k/|x− y|, produces the more complicated

i~
∂ψ̂

∂t
= Hψ̂ +

[
k

∫
ψ̂†(y)ψ̂(y)√

y − z
dy

]
ψ̂(z). (56)

Finally, putting these two pieces together, and moving to a three-dimensional classical
field point of view, we have Schrödinger’s equation (specializing to gravity):

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) + V0|ψ(r, t)|2ψ(r, t)−Gmmψ(r, t)

∫
|ψ(r′, t)|2

|r− r′|
dτ ′. (57)
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From the form of this equation, we see that it can also be written using the auxiliary
variable φ (a gravitational potential of sorts), via

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) + V0|ψ(r, t)|2ψ(r, t) +mφ(r, t)ψ(r, t)

∇2φ(r, t) = 4πGmψ∗(r, t)ψ(r, t),

(58)

the “Schrödinger-Newton” system.
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