Midterm Examination

Electrodynamics II

Physics 322

Due Date: March 8th, 2024

Instructions: There are four problems (ten points each). You may use any online/book resource you like (cite where appropriate) but may not work with other people on the exam, nor ask any real-time questions of the internet (i.e. no ChatGPT or similar). If you have any questions about what resources are available, or have any questions about what a problem is asking, please contact the course instructor. The examination is due by noon on Friday, March 8th (turn in via gradescope).

Problem 1

In two dimensions, working in polar coordinates s (radial) and ϕ (angular), the Laplacian of a function $f(s, \phi)$ is

$$
\begin{equation*}
\nabla^{2} f(s, \phi)=\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial f}{\partial s}\right)+\frac{1}{s^{2}} \frac{\partial^{2} f}{\partial \phi^{2}} . \tag{1}
\end{equation*}
$$

Suppose we have discovered that the structure of $\mathrm{E} \& \mathrm{M}$ in two dimensions is similar to its structure in three, with an electrostatic potential V governed by

$$
\begin{equation*}
\nabla^{2} V(\mathbf{r})=-\frac{\rho(\mathbf{r})}{\epsilon} \tag{2}
\end{equation*}
$$

where ρ is a charge-per-unit-area (area is the "volume" in two dimensions).
a. What are the units of the electric constant ϵ if the electric field $\mathbf{E}=-\nabla V$ causes a force on a charge q given by $\mathbf{F}=q \mathbf{E}$ as in three dimensions?
b. The general integral solution to (2) is

$$
\begin{equation*}
V(\mathbf{r})=\int_{\text {all space }} G\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \rho\left(\mathbf{r}^{\prime}\right) d \tau^{\prime} \tag{3}
\end{equation*}
$$

(here $d \tau^{\prime}$ is the volume element in two dimensions, so has units of area). Find the Green's function for this theory, i.e. what is $G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=$?
c. Find the electric field for a point charge that is located at $\mathbf{r}^{\prime}=x^{\prime} \hat{\mathbf{x}}+y^{\prime} \hat{\mathbf{y}}$ in the two-dimensional plane. Write the electric field, $\mathbf{E}(\mathbf{r})$ in Cartesian coordinates (i.e. assume that $\mathbf{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}$).

Problem 2

a. Which radiates more, a circular loop of wire of radius b with time-varying (neutral) current $I(t)$, or a square loop of wire with side-length $\pi b / 2$ that has the same time-varying current $I(t)$? What is the ratio of the (non-relativistic) power radiated: $\frac{P_{\text {bigger }}}{P_{\text {smaller }}}=$?
b. Which radiates (time-averaged) more, a charge q moving along the $\hat{\mathbf{z}}$ axis with $\mathbf{w}(t)=d \cos (\omega t) \hat{\mathbf{z}}$, or one moving with $\mathbf{w}(t)=d \cos ^{3}(\omega t) \hat{\mathbf{z}}$? What is the ratio of the (time-averaged, non-relativistic) power radiated: $\frac{P_{\text {bigger }}}{P_{\text {smaller }}}=$?

Problem 3

For the electric potential $V(\mathbf{r}, t)=\alpha \cos (\omega t) r$ (α and ω are constants), what is the charge density that generates it? Find an associated current density (assume $\mathbf{J}(\mathbf{r}, t=0)=0$).

Problem 4

Given a function ψ with $\square \psi=0$, show that $\mathbf{E}=\nabla \times(\mathbf{a} \psi)$ has $\square \mathbf{E}=0$ for constant vector \mathbf{a}, and find the associated vacuum magnetic field, \mathbf{B}, assuming $\mathbf{a} \cdot \nabla \psi=0$. Write out the electromagnetic energy density and Poynting vector for these fields (in all cases, express your answers in terms of \mathbf{a}, ψ and its spatial/temporal derivative(s) as needed).

